Mister Exam

Other calculators

Derivative of sqrt(28-3x-x^2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   _______________
  /             2 
\/  28 - 3*x - x  
$$\sqrt{- x^{2} + \left(28 - 3 x\right)}$$
sqrt(28 - 3*x - x^2)
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result is:

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
     -3/2 - x     
------------------
   _______________
  /             2 
\/  28 - 3*x - x  
$$\frac{- x - \frac{3}{2}}{\sqrt{- x^{2} + \left(28 - 3 x\right)}}$$
The second derivative [src]
 /                 2   \ 
 |        (3 + 2*x)    | 
-|1 + -----------------| 
 |      /      2      \| 
 \    4*\28 - x  - 3*x// 
-------------------------
       _______________   
      /       2          
    \/  28 - x  - 3*x    
$$- \frac{\frac{\left(2 x + 3\right)^{2}}{4 \left(- x^{2} - 3 x + 28\right)} + 1}{\sqrt{- x^{2} - 3 x + 28}}$$
The third derivative [src]
             /               2 \
             |      (3 + 2*x)  |
-3*(3 + 2*x)*|4 + -------------|
             |          2      |
             \    28 - x  - 3*x/
--------------------------------
                       3/2      
        /      2      \         
      8*\28 - x  - 3*x/         
$$- \frac{3 \left(2 x + 3\right) \left(\frac{\left(2 x + 3\right)^{2}}{- x^{2} - 3 x + 28} + 4\right)}{8 \left(- x^{2} - 3 x + 28\right)^{\frac{3}{2}}}$$