Mister Exam

Other calculators

Derivative of sqrt^3(x)cosx

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
     3       
  ___        
\/ x  *cos(x)
$$\left(\sqrt{x}\right)^{3} \cos{\left(x \right)}$$
(sqrt(x))^3*cos(x)
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Apply the power rule: goes to

      The result of the chain rule is:

    ; to find :

    1. The derivative of cosine is negative sine:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
                    ___       
   3/2          3*\/ x *cos(x)
- x   *sin(x) + --------------
                      2       
$$- x^{\frac{3}{2}} \sin{\left(x \right)} + \frac{3 \sqrt{x} \cos{\left(x \right)}}{2}$$
The second derivative [src]
   3/2              ___          3*cos(x)
- x   *cos(x) - 3*\/ x *sin(x) + --------
                                     ___ 
                                 4*\/ x  
$$- x^{\frac{3}{2}} \cos{\left(x \right)} - 3 \sqrt{x} \sin{\left(x \right)} + \frac{3 \cos{\left(x \right)}}{4 \sqrt{x}}$$
The third derivative [src]
                  ___                             
 3/2          9*\/ x *cos(x)   9*sin(x)   3*cos(x)
x   *sin(x) - -------------- - -------- - --------
                    2              ___        3/2 
                               4*\/ x      8*x    
$$x^{\frac{3}{2}} \sin{\left(x \right)} - \frac{9 \sqrt{x} \cos{\left(x \right)}}{2} - \frac{9 \sin{\left(x \right)}}{4 \sqrt{x}} - \frac{3 \cos{\left(x \right)}}{8 x^{\frac{3}{2}}}$$