Mister Exam

Other calculators

Derivative of (sqrt(tan(x/(e^x))))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
     _________
    /    /x \ 
   /  tan|--| 
  /      | x| 
\/       \E / 
$$\sqrt{\tan{\left(\frac{x}{e^{x}} \right)}}$$
sqrt(tan(x/E^x))
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Rewrite the function to be differentiated:

    2. Apply the quotient rule, which is:

      and .

      To find :

      1. Let .

      2. The derivative of sine is cosine:

      3. Then, apply the chain rule. Multiply by :

        1. Apply the quotient rule, which is:

          and .

          To find :

          1. Apply the power rule: goes to

          To find :

          1. The derivative of is itself.

          Now plug in to the quotient rule:

        The result of the chain rule is:

      To find :

      1. Let .

      2. The derivative of cosine is negative sine:

      3. Then, apply the chain rule. Multiply by :

        1. Apply the quotient rule, which is:

          and .

          To find :

          1. Apply the power rule: goes to

          To find :

          1. The derivative of is itself.

          Now plug in to the quotient rule:

        The result of the chain rule is:

      Now plug in to the quotient rule:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
/       2/x \\ /1       -x\
|1 + tan |--||*|-- - x*e  |
|        | x|| | x        |
\        \E // \E         /
---------------------------
             _________     
            /    /x \      
      2*   /  tan|--|      
          /      | x|      
        \/       \E /      
$$\frac{\left(- x e^{- x} + \frac{1}{e^{x}}\right) \left(\tan^{2}{\left(\frac{x}{e^{x}} \right)} + 1\right)}{2 \sqrt{\tan{\left(\frac{x}{e^{x}} \right)}}}$$
The second derivative [src]
                  /                                 ____________               2 /       2/   -x\\  -x\    
/       2/   -x\\ |      -2 + x                2   /    /   -x\   -x   (-1 + x) *\1 + tan \x*e  //*e  |  -x
\1 + tan \x*e  //*|----------------- + (-1 + x) *\/  tan\x*e  / *e   - -------------------------------|*e  
                  |     ____________                                                3/2/   -x\        |    
                  |    /    /   -x\                                            4*tan   \x*e  /        |    
                  \2*\/  tan\x*e  /                                                                   /    
$$\left(\tan^{2}{\left(x e^{- x} \right)} + 1\right) \left(\frac{x - 2}{2 \sqrt{\tan{\left(x e^{- x} \right)}}} - \frac{\left(x - 1\right)^{2} \left(\tan^{2}{\left(x e^{- x} \right)} + 1\right) e^{- x}}{4 \tan^{\frac{3}{2}}{\left(x e^{- x} \right)}} + \left(x - 1\right)^{2} e^{- x} \sqrt{\tan{\left(x e^{- x} \right)}}\right) e^{- x}$$
The third derivative [src]
                  /                                                                                                                                                         2                                                            \    
                  |                                                                3 /       2/   -x\\  -2*x        ____________                           /       2/   -x\\          3  -2*x     /       2/   -x\\                    -x|    
/       2/   -x\\ |        -3 + x                  3    3/2/   -x\  -2*x   (-1 + x) *\1 + tan \x*e  //*e           /    /   -x\                     -x   3*\1 + tan \x*e  // *(-1 + x) *e       3*\1 + tan \x*e  //*(-1 + x)*(-2 + x)*e  |  -x
\1 + tan \x*e  //*|- ----------------- - 2*(-1 + x) *tan   \x*e  /*e     + --------------------------------- - 3*\/  tan\x*e  / *(-1 + x)*(-2 + x)*e   - ------------------------------------ + -----------------------------------------|*e  
                  |       ____________                                                  ____________                                                                    5/2/   -x\                                3/2/   -x\             |    
                  |      /    /   -x\                                                  /    /   -x\                                                                8*tan   \x*e  /                           4*tan   \x*e  /             |    
                  \  2*\/  tan\x*e  /                                              2*\/  tan\x*e  /                                                                                                                                      /    
$$\left(\tan^{2}{\left(x e^{- x} \right)} + 1\right) \left(- \frac{x - 3}{2 \sqrt{\tan{\left(x e^{- x} \right)}}} + \frac{3 \left(x - 2\right) \left(x - 1\right) \left(\tan^{2}{\left(x e^{- x} \right)} + 1\right) e^{- x}}{4 \tan^{\frac{3}{2}}{\left(x e^{- x} \right)}} - 3 \left(x - 2\right) \left(x - 1\right) e^{- x} \sqrt{\tan{\left(x e^{- x} \right)}} - \frac{3 \left(x - 1\right)^{3} \left(\tan^{2}{\left(x e^{- x} \right)} + 1\right)^{2} e^{- 2 x}}{8 \tan^{\frac{5}{2}}{\left(x e^{- x} \right)}} + \frac{\left(x - 1\right)^{3} \left(\tan^{2}{\left(x e^{- x} \right)} + 1\right) e^{- 2 x}}{2 \sqrt{\tan{\left(x e^{- x} \right)}}} - 2 \left(x - 1\right)^{3} e^{- 2 x} \tan^{\frac{3}{2}}{\left(x e^{- x} \right)}\right) e^{- x}$$