_________
/ /x \
/ tan|--|
/ | x|
\/ \E /
sqrt(tan(x/E^x))
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Rewrite the function to be differentiated:
Apply the quotient rule, which is:
and .
To find :
Let .
The derivative of sine is cosine:
Then, apply the chain rule. Multiply by :
Apply the quotient rule, which is:
and .
To find :
Apply the power rule: goes to
To find :
The derivative of is itself.
Now plug in to the quotient rule:
The result of the chain rule is:
To find :
Let .
The derivative of cosine is negative sine:
Then, apply the chain rule. Multiply by :
Apply the quotient rule, which is:
and .
To find :
Apply the power rule: goes to
To find :
The derivative of is itself.
Now plug in to the quotient rule:
The result of the chain rule is:
Now plug in to the quotient rule:
The result of the chain rule is:
Now simplify:
The answer is:
/ 2/x \\ /1 -x\
|1 + tan |--||*|-- - x*e |
| | x|| | x |
\ \E // \E /
---------------------------
_________
/ /x \
2* / tan|--|
/ | x|
\/ \E /
/ ____________ 2 / 2/ -x\\ -x\
/ 2/ -x\\ | -2 + x 2 / / -x\ -x (-1 + x) *\1 + tan \x*e //*e | -x
\1 + tan \x*e //*|----------------- + (-1 + x) *\/ tan\x*e / *e - -------------------------------|*e
| ____________ 3/2/ -x\ |
| / / -x\ 4*tan \x*e / |
\2*\/ tan\x*e / /
/ 2 \
| 3 / 2/ -x\\ -2*x ____________ / 2/ -x\\ 3 -2*x / 2/ -x\\ -x|
/ 2/ -x\\ | -3 + x 3 3/2/ -x\ -2*x (-1 + x) *\1 + tan \x*e //*e / / -x\ -x 3*\1 + tan \x*e // *(-1 + x) *e 3*\1 + tan \x*e //*(-1 + x)*(-2 + x)*e | -x
\1 + tan \x*e //*|- ----------------- - 2*(-1 + x) *tan \x*e /*e + --------------------------------- - 3*\/ tan\x*e / *(-1 + x)*(-2 + x)*e - ------------------------------------ + -----------------------------------------|*e
| ____________ ____________ 5/2/ -x\ 3/2/ -x\ |
| / / -x\ / / -x\ 8*tan \x*e / 4*tan \x*e / |
\ 2*\/ tan\x*e / 2*\/ tan\x*e / /