Mister Exam

Derivative of sqrt(6-2x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  _________
\/ 6 - 2*x 
62x\sqrt{6 - 2 x}
d /  _________\
--\\/ 6 - 2*x /
dx             
ddx62x\frac{d}{d x} \sqrt{6 - 2 x}
Detail solution
  1. Let u=62xu = 6 - 2 x.

  2. Apply the power rule: u\sqrt{u} goes to 12u\frac{1}{2 \sqrt{u}}

  3. Then, apply the chain rule. Multiply by ddx(62x)\frac{d}{d x} \left(6 - 2 x\right):

    1. Differentiate 62x6 - 2 x term by term:

      1. The derivative of the constant 66 is zero.

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: xx goes to 11

          So, the result is: 22

        So, the result is: 2-2

      The result is: 2-2

    The result of the chain rule is:

    162x- \frac{1}{\sqrt{6 - 2 x}}

  4. Now simplify:

    223x- \frac{\sqrt{2}}{2 \sqrt{3 - x}}


The answer is:

223x- \frac{\sqrt{2}}{2 \sqrt{3 - x}}

The graph
02468-8-6-4-2-1010-1010
The first derivative [src]
    -1     
-----------
  _________
\/ 6 - 2*x 
162x- \frac{1}{\sqrt{6 - 2 x}}
The second derivative [src]
     ___    
  -\/ 2     
------------
         3/2
4*(3 - x)   
24(3x)32- \frac{\sqrt{2}}{4 \left(3 - x\right)^{\frac{3}{2}}}
The third derivative [src]
       ___  
  -3*\/ 2   
------------
         5/2
8*(3 - x)   
328(3x)52- \frac{3 \sqrt{2}}{8 \left(3 - x\right)^{\frac{5}{2}}}
The graph
Derivative of sqrt(6-2x)