Mister Exam

Derivative of sqrt(7,7x+5)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    __________
   / 77*x     
  /  ---- + 5 
\/    10      
$$\sqrt{\frac{77 x}{10} + 5}$$
sqrt(77*x/10 + 5)
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      2. The derivative of the constant is zero.

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
        77       
-----------------
       __________
      / 77*x     
20*  /  ---- + 5 
   \/    10      
$$\frac{77}{20 \sqrt{\frac{77 x}{10} + 5}}$$
The second derivative [src]
      -5929      
-----------------
              3/2
    /    77*x\   
400*|5 + ----|   
    \     10 /   
$$- \frac{5929}{400 \left(\frac{77 x}{10} + 5\right)^{\frac{3}{2}}}$$
The third derivative [src]
     1369599      
------------------
               5/2
     /    77*x\   
8000*|5 + ----|   
     \     10 /   
$$\frac{1369599}{8000 \left(\frac{77 x}{10} + 5\right)^{\frac{5}{2}}}$$