Mister Exam

Derivative of sqrt(1+sqrt(x))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   ___________
  /       ___ 
\/  1 + \/ x  
$$\sqrt{\sqrt{x} + 1}$$
  /   ___________\
d |  /       ___ |
--\\/  1 + \/ x  /
dx                
$$\frac{d}{d x} \sqrt{\sqrt{x} + 1}$$
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. Apply the power rule: goes to

      The result is:

    The result of the chain rule is:


The answer is:

The graph
The first derivative [src]
          1           
----------------------
           ___________
    ___   /       ___ 
4*\/ x *\/  1 + \/ x  
$$\frac{1}{4 \sqrt{x} \sqrt{\sqrt{x} + 1}}$$
The second derivative [src]
 / 2           1      \ 
-|---- + -------------| 
 | 3/2     /      ___\| 
 \x      x*\1 + \/ x // 
------------------------
         ___________    
        /       ___     
   16*\/  1 + \/ x      
$$- \frac{\frac{1}{x \left(\sqrt{x} + 1\right)} + \frac{2}{x^{\frac{3}{2}}}}{16 \sqrt{\sqrt{x} + 1}}$$
The third derivative [src]
  / 4             1                 2       \
3*|---- + ----------------- + --------------|
  | 5/2                   2    2 /      ___\|
  |x       3/2 /      ___\    x *\1 + \/ x /|
  \       x   *\1 + \/ x /                  /
---------------------------------------------
                    ___________              
                   /       ___               
              64*\/  1 + \/ x                
$$\frac{3 \cdot \left(\frac{2}{x^{2} \left(\sqrt{x} + 1\right)} + \frac{1}{x^{\frac{3}{2}} \left(\sqrt{x} + 1\right)^{2}} + \frac{4}{x^{\frac{5}{2}}}\right)}{64 \sqrt{\sqrt{x} + 1}}$$
The graph
Derivative of sqrt(1+sqrt(x))