_____________ / 2 \/ 1 + sin (x)
sqrt(1 + sin(x)^2)
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Differentiate term by term:
The derivative of the constant is zero.
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
The derivative of sine is cosine:
The result of the chain rule is:
The result is:
The result of the chain rule is:
Now simplify:
The answer is:
cos(x)*sin(x) ---------------- _____________ / 2 \/ 1 + sin (x)
2 2
2 2 cos (x)*sin (x)
cos (x) - sin (x) - ---------------
2
1 + sin (x)
-----------------------------------
_____________
/ 2
\/ 1 + sin (x)
/ 2 2 2 2 \
| 3*cos (x) 3*sin (x) 3*cos (x)*sin (x)|
|-4 - ----------- + ----------- + -----------------|*cos(x)*sin(x)
| 2 2 2 |
| 1 + sin (x) 1 + sin (x) / 2 \ |
\ \1 + sin (x)/ /
------------------------------------------------------------------
_____________
/ 2
\/ 1 + sin (x)