_______________ \/ 1 + sin(14*x)
sqrt(1 + sin(14*x))
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Differentiate term by term:
The derivative of the constant is zero.
Let .
The derivative of sine is cosine:
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result of the chain rule is:
The result is:
The result of the chain rule is:
The answer is:
7*cos(14*x) ----------------- _______________ \/ 1 + sin(14*x)
/ 2 \
| cos (14*x) |
-49*|2*sin(14*x) + -------------|
\ 1 + sin(14*x)/
---------------------------------
_______________
\/ 1 + sin(14*x)
/ 2 \
| 3*cos (14*x) 6*sin(14*x) |
343*|-4 + ---------------- + -------------|*cos(14*x)
| 2 1 + sin(14*x)|
\ (1 + sin(14*x)) /
-----------------------------------------------------
_______________
\/ 1 + sin(14*x)