Mister Exam

Other calculators

Derivative of sqrt(1+sin(14x))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  _______________
\/ 1 + sin(14*x) 
$$\sqrt{\sin{\left(14 x \right)} + 1}$$
sqrt(1 + sin(14*x))
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. Let .

      3. The derivative of sine is cosine:

      4. Then, apply the chain rule. Multiply by :

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result of the chain rule is:

      The result is:

    The result of the chain rule is:


The answer is:

The graph
The first derivative [src]
   7*cos(14*x)   
-----------------
  _______________
\/ 1 + sin(14*x) 
$$\frac{7 \cos{\left(14 x \right)}}{\sqrt{\sin{\left(14 x \right)} + 1}}$$
The second derivative [src]
    /                   2       \
    |                cos (14*x) |
-49*|2*sin(14*x) + -------------|
    \              1 + sin(14*x)/
---------------------------------
          _______________        
        \/ 1 + sin(14*x)         
$$- \frac{49 \left(2 \sin{\left(14 x \right)} + \frac{\cos^{2}{\left(14 x \right)}}{\sin{\left(14 x \right)} + 1}\right)}{\sqrt{\sin{\left(14 x \right)} + 1}}$$
The third derivative [src]
    /            2                        \          
    |       3*cos (14*x)      6*sin(14*x) |          
343*|-4 + ---------------- + -------------|*cos(14*x)
    |                    2   1 + sin(14*x)|          
    \     (1 + sin(14*x))                 /          
-----------------------------------------------------
                    _______________                  
                  \/ 1 + sin(14*x)                   
$$\frac{343 \left(-4 + \frac{6 \sin{\left(14 x \right)}}{\sin{\left(14 x \right)} + 1} + \frac{3 \cos^{2}{\left(14 x \right)}}{\left(\sin{\left(14 x \right)} + 1\right)^{2}}\right) \cos{\left(14 x \right)}}{\sqrt{\sin{\left(14 x \right)} + 1}}$$