____________
\/ 1 + log(x)
--------------
x
sqrt(1 + log(x))/x
Apply the quotient rule, which is:
and .
To find :
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Differentiate term by term:
The derivative of the constant is zero.
The derivative of is .
The result is:
The result of the chain rule is:
To find :
Apply the power rule: goes to
Now plug in to the quotient rule:
Now simplify:
The answer is:
____________
1 \/ 1 + log(x)
------------------- - --------------
2 ____________ 2
2*x *\/ 1 + log(x) x
1
2 + ----------
1 ____________ 1 + log(x)
- -------------- + 2*\/ 1 + log(x) - ----------------
____________ ____________
\/ 1 + log(x) 4*\/ 1 + log(x)
------------------------------------------------------
3
x
3 6 15 36 44
/ 1 \ 8 + ------------- + ---------- 48 + ------------- + ------------- + ----------
3*|2 + ----------| 2 1 + log(x) 3 2 1 + log(x)
12 ____________ \ 1 + log(x)/ (1 + log(x)) (1 + log(x)) (1 + log(x))
- -------------- + 24*\/ 1 + log(x) - ------------------ - ------------------------------ - -----------------------------------------------
____________ ____________ ____________ ____________
\/ 1 + log(x) \/ 1 + log(x) 2*\/ 1 + log(x) 16*\/ 1 + log(x)
--------------------------------------------------------------------------------------------------------------------------------------------
5
x
3 6
8 + ------------- + ---------- / 1 \
2 1 + log(x) 3*|2 + ----------|
____________ 3 (1 + log(x)) \ 1 + log(x)/
- 6*\/ 1 + log(x) + -------------- + ------------------------------ + ------------------
____________ ____________ ____________
\/ 1 + log(x) 8*\/ 1 + log(x) 4*\/ 1 + log(x)
-----------------------------------------------------------------------------------------
4
x