Mister Exam

Other calculators

Derivative of sqrt(1+ln(x))/x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  ____________
\/ 1 + log(x) 
--------------
      x       
$$\frac{\sqrt{\log{\left(x \right)} + 1}}{x}$$
sqrt(1 + log(x))/x
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. The derivative of is .

        The result is:

      The result of the chain rule is:

    To find :

    1. Apply the power rule: goes to

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
                        ____________
         1            \/ 1 + log(x) 
------------------- - --------------
   2   ____________          2      
2*x *\/ 1 + log(x)          x       
$$- \frac{\sqrt{\log{\left(x \right)} + 1}}{x^{2}} + \frac{1}{2 x^{2} \sqrt{\log{\left(x \right)} + 1}}$$
The second derivative [src]
                                               1      
                                       2 + ---------- 
        1              ____________        1 + log(x) 
- -------------- + 2*\/ 1 + log(x)  - ----------------
    ____________                          ____________
  \/ 1 + log(x)                       4*\/ 1 + log(x) 
------------------------------------------------------
                           3                          
                          x                           
$$\frac{- \frac{2 + \frac{1}{\log{\left(x \right)} + 1}}{4 \sqrt{\log{\left(x \right)} + 1}} + 2 \sqrt{\log{\left(x \right)} + 1} - \frac{1}{\sqrt{\log{\left(x \right)} + 1}}}{x^{3}}$$
4-я производная [src]
                                                                      3             6                   15              36            44    
                                         /        1     \   8 + ------------- + ----------   48 + ------------- + ------------- + ----------
                                       3*|2 + ----------|                   2   1 + log(x)                    3               2   1 + log(x)
        12              ____________     \    1 + log(x)/       (1 + log(x))                      (1 + log(x))    (1 + log(x))              
- -------------- + 24*\/ 1 + log(x)  - ------------------ - ------------------------------ - -----------------------------------------------
    ____________                           ____________                ____________                              ____________               
  \/ 1 + log(x)                          \/ 1 + log(x)             2*\/ 1 + log(x)                          16*\/ 1 + log(x)                
--------------------------------------------------------------------------------------------------------------------------------------------
                                                                      5                                                                     
                                                                     x                                                                      
$$\frac{- \frac{3 \left(2 + \frac{1}{\log{\left(x \right)} + 1}\right)}{\sqrt{\log{\left(x \right)} + 1}} + 24 \sqrt{\log{\left(x \right)} + 1} - \frac{8 + \frac{6}{\log{\left(x \right)} + 1} + \frac{3}{\left(\log{\left(x \right)} + 1\right)^{2}}}{2 \sqrt{\log{\left(x \right)} + 1}} - \frac{48 + \frac{44}{\log{\left(x \right)} + 1} + \frac{36}{\left(\log{\left(x \right)} + 1\right)^{2}} + \frac{15}{\left(\log{\left(x \right)} + 1\right)^{3}}}{16 \sqrt{\log{\left(x \right)} + 1}} - \frac{12}{\sqrt{\log{\left(x \right)} + 1}}}{x^{5}}$$
The third derivative [src]
                                                3             6                          
                                      8 + ------------- + ----------     /        1     \
                                                      2   1 + log(x)   3*|2 + ----------|
      ____________         3              (1 + log(x))                   \    1 + log(x)/
- 6*\/ 1 + log(x)  + -------------- + ------------------------------ + ------------------
                       ____________              ____________               ____________ 
                     \/ 1 + log(x)           8*\/ 1 + log(x)            4*\/ 1 + log(x)  
-----------------------------------------------------------------------------------------
                                             4                                           
                                            x                                            
$$\frac{\frac{3 \left(2 + \frac{1}{\log{\left(x \right)} + 1}\right)}{4 \sqrt{\log{\left(x \right)} + 1}} - 6 \sqrt{\log{\left(x \right)} + 1} + \frac{8 + \frac{6}{\log{\left(x \right)} + 1} + \frac{3}{\left(\log{\left(x \right)} + 1\right)^{2}}}{8 \sqrt{\log{\left(x \right)} + 1}} + \frac{3}{\sqrt{\log{\left(x \right)} + 1}}}{x^{4}}$$