Mister Exam

Other calculators

Derivative of sqrt(1+4x)*(1-cos(4x))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  _________               
\/ 1 + 4*x *(1 - cos(4*x))
$$\left(1 - \cos{\left(4 x \right)}\right) \sqrt{4 x + 1}$$
sqrt(1 + 4*x)*(1 - cos(4*x))
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result is:

      The result of the chain rule is:

    ; to find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Let .

        2. The derivative of cosine is negative sine:

        3. Then, apply the chain rule. Multiply by :

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          The result of the chain rule is:

        So, the result is:

      The result is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
2*(1 - cos(4*x))       _________         
---------------- + 4*\/ 1 + 4*x *sin(4*x)
    _________                            
  \/ 1 + 4*x                             
$$\frac{2 \left(1 - \cos{\left(4 x \right)}\right)}{\sqrt{4 x + 1}} + 4 \sqrt{4 x + 1} \sin{\left(4 x \right)}$$
The second derivative [src]
  /-1 + cos(4*x)       _________             4*sin(4*x)\
4*|------------- + 4*\/ 1 + 4*x *cos(4*x) + -----------|
  |          3/2                              _________|
  \ (1 + 4*x)                               \/ 1 + 4*x /
$$4 \left(4 \sqrt{4 x + 1} \cos{\left(4 x \right)} + \frac{4 \sin{\left(4 x \right)}}{\sqrt{4 x + 1}} + \frac{\cos{\left(4 x \right)} - 1}{\left(4 x + 1\right)^{\frac{3}{2}}}\right)$$
The third derivative [src]
  /      _________             6*sin(4*x)    3*(-1 + cos(4*x))   12*cos(4*x)\
8*|- 8*\/ 1 + 4*x *sin(4*x) - ------------ - ----------------- + -----------|
  |                                    3/2               5/2       _________|
  \                           (1 + 4*x)         (1 + 4*x)        \/ 1 + 4*x /
$$8 \left(- 8 \sqrt{4 x + 1} \sin{\left(4 x \right)} + \frac{12 \cos{\left(4 x \right)}}{\sqrt{4 x + 1}} - \frac{6 \sin{\left(4 x \right)}}{\left(4 x + 1\right)^{\frac{3}{2}}} - \frac{3 \left(\cos{\left(4 x \right)} - 1\right)}{\left(4 x + 1\right)^{\frac{5}{2}}}\right)$$