Mister Exam

Other calculators


sqrt(1-8*sin(x)/8)

Derivative of sqrt(1-8*sin(x)/8)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    ______________
   /     8*sin(x) 
  /  1 - -------- 
\/          8     
$$\sqrt{- \frac{8 \sin{\left(x \right)}}{8} + 1}$$
  /    ______________\
d |   /     8*sin(x) |
--|  /  1 - -------- |
dx\\/          8     /
$$\frac{d}{d x} \sqrt{- \frac{8 \sin{\left(x \right)}}{8} + 1}$$
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the quotient rule, which is:

          and .

          To find :

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. The derivative of sine is cosine:

            So, the result is:

          To find :

          1. The derivative of the constant is zero.

          Now plug in to the quotient rule:

        So, the result is:

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
      -cos(x)       
--------------------
      ______________
     /     8*sin(x) 
2*  /  1 - -------- 
  \/          8     
$$- \frac{\cos{\left(x \right)}}{2 \sqrt{- \frac{8 \sin{\left(x \right)}}{8} + 1}}$$
The second derivative [src]
               2     
            cos (x)  
2*sin(x) - ----------
           1 - sin(x)
---------------------
       ____________  
   4*\/ 1 - sin(x)   
$$\frac{2 \sin{\left(x \right)} - \frac{\cos^{2}{\left(x \right)}}{- \sin{\left(x \right)} + 1}}{4 \sqrt{- \sin{\left(x \right)} + 1}}$$
The third derivative [src]
/           2                  \       
|      3*cos (x)      6*sin(x) |       
|4 - ------------- + ----------|*cos(x)
|                2   1 - sin(x)|       
\    (1 - sin(x))              /       
---------------------------------------
                ____________           
            8*\/ 1 - sin(x)            
$$\frac{\left(4 + \frac{6 \sin{\left(x \right)}}{- \sin{\left(x \right)} + 1} - \frac{3 \cos^{2}{\left(x \right)}}{\left(- \sin{\left(x \right)} + 1\right)^{2}}\right) \cos{\left(x \right)}}{8 \sqrt{- \sin{\left(x \right)} + 1}}$$
The graph
Derivative of sqrt(1-8*sin(x)/8)