Mister Exam

Other calculators


sqrt(9+8x-x^2)

Derivative of sqrt(9+8x-x^2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   ______________
  /            2 
\/  9 + 8*x - x  
$$\sqrt{- x^{2} + 8 x + 9}$$
  /   ______________\
d |  /            2 |
--\\/  9 + 8*x - x  /
dx                   
$$\frac{d}{d x} \sqrt{- x^{2} + 8 x + 9}$$
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      3. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
      4 - x      
-----------------
   ______________
  /            2 
\/  9 + 8*x - x  
$$\frac{- x + 4}{\sqrt{- x^{2} + 8 x + 9}}$$
The second derivative [src]
 /             2  \ 
 |     (-4 + x)   | 
-|1 + ------------| 
 |         2      | 
 \    9 - x  + 8*x/ 
--------------------
    ______________  
   /      2         
 \/  9 - x  + 8*x   
$$- \frac{\frac{\left(x - 4\right)^{2}}{- x^{2} + 8 x + 9} + 1}{\sqrt{- x^{2} + 8 x + 9}}$$
The third derivative [src]
   /             2  \         
   |     (-4 + x)   |         
-3*|1 + ------------|*(-4 + x)
   |         2      |         
   \    9 - x  + 8*x/         
------------------------------
                    3/2       
      /     2      \          
      \9 - x  + 8*x/          
$$- \frac{3 \left(x - 4\right) \left(\frac{\left(x - 4\right)^{2}}{- x^{2} + 8 x + 9} + 1\right)}{\left(- x^{2} + 8 x + 9\right)^{\frac{3}{2}}}$$
The graph
Derivative of sqrt(9+8x-x^2)