Mister Exam

Other calculators

Derivative of sqrtln(x)ln^2(x)ln^3x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  ________    2       3   
\/ log(x) *log (x)*log (x)
$$\sqrt{\log{\left(x \right)}} \log{\left(x \right)}^{2} \log{\left(x \right)}^{3}$$
(sqrt(log(x))*log(x)^2)*log(x)^3
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Apply the product rule:

      ; to find :

      1. Let .

      2. Apply the power rule: goes to

      3. Then, apply the chain rule. Multiply by :

        1. The derivative of is .

        The result of the chain rule is:

      ; to find :

      1. Let .

      2. Apply the power rule: goes to

      3. Then, apply the chain rule. Multiply by :

        1. The derivative of is .

        The result of the chain rule is:

      The result is:

    ; to find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of is .

      The result of the chain rule is:

    The result is:


The answer is:

The graph
The first derivative [src]
      9/2   
11*log   (x)
------------
    2*x     
$$\frac{11 \log{\left(x \right)}^{\frac{9}{2}}}{2 x}$$
The second derivative [src]
          /                /      1   \       \
          |                |2 + ------|*log(x)|
   7/2    |                \    log(x)/       |
log   (x)*|25 - 5*log(x) - -------------------|
          \                         4         /
-----------------------------------------------
                        2                      
                       x                       
$$\frac{\left(- \frac{\left(2 + \frac{1}{\log{\left(x \right)}}\right) \log{\left(x \right)}}{4} - 5 \log{\left(x \right)} + 25\right) \log{\left(x \right)}^{\frac{7}{2}}}{x^{2}}$$
The third derivative [src]
                                                                                                                            3    /     3/2    /       3        6   \        ________                        ________ /      1   \   24*(-1 + log(x))\
                                                                         5/2    /                 /      1   \       \   log (x)*|- log   (x)*|8 + ------- + ------| - 16*\/ log(x) *(-3 + 2*log(x)) + 12*\/ log(x) *|2 + ------| + ----------------|
                                             5/2                    9*log   (x)*|-16 + 8*log(x) + |2 + ------|*log(x)|           |            |       2      log(x)|                                                 \    log(x)/        ________   |
     5/2    /       2              \   45*log   (x)*(-2 + log(x))               \                 \    log(x)/       /           \            \    log (x)         /                                                                   \/ log(x)    /
6*log   (x)*\1 + log (x) - 3*log(x)/ - -------------------------- - -------------------------------------------------- - ----------------------------------------------------------------------------------------------------------------------------
                                                   2                                        4                                                                                         8                                                              
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                                                           3                                                                                                                         
                                                                                                                          x                                                                                                                          
$$\frac{- \frac{45 \left(\log{\left(x \right)} - 2\right) \log{\left(x \right)}^{\frac{5}{2}}}{2} - \frac{9 \left(\left(2 + \frac{1}{\log{\left(x \right)}}\right) \log{\left(x \right)} + 8 \log{\left(x \right)} - 16\right) \log{\left(x \right)}^{\frac{5}{2}}}{4} + 6 \left(\log{\left(x \right)}^{2} - 3 \log{\left(x \right)} + 1\right) \log{\left(x \right)}^{\frac{5}{2}} - \frac{\left(12 \left(2 + \frac{1}{\log{\left(x \right)}}\right) \sqrt{\log{\left(x \right)}} + \frac{24 \left(\log{\left(x \right)} - 1\right)}{\sqrt{\log{\left(x \right)}}} - 16 \left(2 \log{\left(x \right)} - 3\right) \sqrt{\log{\left(x \right)}} - \left(8 + \frac{6}{\log{\left(x \right)}} + \frac{3}{\log{\left(x \right)}^{2}}\right) \log{\left(x \right)}^{\frac{3}{2}}\right) \log{\left(x \right)}^{3}}{8}}{x^{3}}$$