Mister Exam

Other calculators

Derivative of (sqrt(4*x+1))/x^2

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  _________
\/ 4*x + 1 
-----------
      2    
     x     
$$\frac{\sqrt{4 x + 1}}{x^{2}}$$
sqrt(4*x + 1)/x^2
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result is:

      The result of the chain rule is:

    To find :

    1. Apply the power rule: goes to

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
      _________                 
  2*\/ 4*x + 1          2       
- ------------- + --------------
         3         2   _________
        x         x *\/ 4*x + 1 
$$\frac{2}{x^{2} \sqrt{4 x + 1}} - \frac{2 \sqrt{4 x + 1}}{x^{3}}$$
The second derivative [src]
  /                                     _________\
  |       2               4         3*\/ 1 + 4*x |
2*|- ------------ - ------------- + -------------|
  |           3/2       _________          2     |
  \  (1 + 4*x)      x*\/ 1 + 4*x          x      /
--------------------------------------------------
                         2                        
                        x                         
$$\frac{2 \left(- \frac{2}{\left(4 x + 1\right)^{\frac{3}{2}}} - \frac{4}{x \sqrt{4 x + 1}} + \frac{3 \sqrt{4 x + 1}}{x^{2}}\right)}{x^{2}}$$
The third derivative [src]
   /                   _________                                  \
   |     2         2*\/ 1 + 4*x          2                3       |
12*|------------ - ------------- + -------------- + --------------|
   |         5/2          3                   3/2    2   _________|
   \(1 + 4*x)            x         x*(1 + 4*x)      x *\/ 1 + 4*x /
-------------------------------------------------------------------
                                  2                                
                                 x                                 
$$\frac{12 \left(\frac{2}{\left(4 x + 1\right)^{\frac{5}{2}}} + \frac{2}{x \left(4 x + 1\right)^{\frac{3}{2}}} + \frac{3}{x^{2} \sqrt{4 x + 1}} - \frac{2 \sqrt{4 x + 1}}{x^{3}}\right)}{x^{2}}$$