Mister Exam

Derivative of sqrt(5-4sinx)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  ______________
\/ 5 - 4*sin(x) 
$$\sqrt{- 4 \sin{\left(x \right)} + 5}$$
d /  ______________\
--\\/ 5 - 4*sin(x) /
dx                  
$$\frac{d}{d x} \sqrt{- 4 \sin{\left(x \right)} + 5}$$
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. The derivative of sine is cosine:

          So, the result is:

        So, the result is:

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
   -2*cos(x)    
----------------
  ______________
\/ 5 - 4*sin(x) 
$$- \frac{2 \cos{\left(x \right)}}{\sqrt{- 4 \sin{\left(x \right)} + 5}}$$
The second derivative [src]
  /        2              \
  |   2*cos (x)           |
2*|- ------------ + sin(x)|
  \  5 - 4*sin(x)         /
---------------------------
        ______________     
      \/ 5 - 4*sin(x)      
$$\frac{2 \left(\sin{\left(x \right)} - \frac{2 \cos^{2}{\left(x \right)}}{- 4 \sin{\left(x \right)} + 5}\right)}{\sqrt{- 4 \sin{\left(x \right)} + 5}}$$
The third derivative [src]
  /             2                    \       
  |       12*cos (x)       6*sin(x)  |       
2*|1 - --------------- + ------------|*cos(x)
  |                  2   5 - 4*sin(x)|       
  \    (5 - 4*sin(x))                /       
---------------------------------------------
                 ______________              
               \/ 5 - 4*sin(x)               
$$\frac{2 \cdot \left(1 + \frac{6 \sin{\left(x \right)}}{- 4 \sin{\left(x \right)} + 5} - \frac{12 \cos^{2}{\left(x \right)}}{\left(- 4 \sin{\left(x \right)} + 5\right)^{2}}\right) \cos{\left(x \right)}}{\sqrt{- 4 \sin{\left(x \right)} + 5}}$$
The graph
Derivative of sqrt(5-4sinx)