Mister Exam

Other calculators

Derivative of sqrt(exp(-x)+8exp(3x^2))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    _______________
   /             2 
  /   -x      3*x  
\/   e   + 8*e     
$$\sqrt{8 e^{3 x^{2}} + e^{- x}}$$
sqrt(exp(-x) + 8*exp(3*x^2))
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. Let .

      2. The derivative of is itself.

      3. Then, apply the chain rule. Multiply by :

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result of the chain rule is:

      4. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Let .

        2. The derivative of is itself.

        3. Then, apply the chain rule. Multiply by :

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          The result of the chain rule is:

        So, the result is:

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
    -x            2
   e           3*x 
 - --- + 24*x*e    
    2              
-------------------
    _______________
   /             2 
  /   -x      3*x  
\/   e   + 8*e     
$$\frac{24 x e^{3 x^{2}} - \frac{e^{- x}}{2}}{\sqrt{8 e^{3 x^{2}} + e^{- x}}}$$
The second derivative [src]
                                                    2
                                /                 2\ 
 -x          2              2   |   -x         3*x | 
e         3*x         2  3*x    \- e   + 48*x*e    / 
--- + 24*e     + 144*x *e     - ---------------------
 2                                  /      2      \  
                                    |   3*x     -x|  
                                  4*\8*e     + e  /  
-----------------------------------------------------
                     _______________                 
                    /       2                        
                   /     3*x     -x                  
                 \/   8*e     + e                    
$$\frac{144 x^{2} e^{3 x^{2}} - \frac{\left(48 x e^{3 x^{2}} - e^{- x}\right)^{2}}{4 \left(8 e^{3 x^{2}} + e^{- x}\right)} + 24 e^{3 x^{2}} + \frac{e^{- x}}{2}}{\sqrt{8 e^{3 x^{2}} + e^{- x}}}$$
The third derivative [src]
                                                           3                                                         
                                       /                 2\      /                 2\ /       2              2      \
   -x             2              2     |   -x         3*x |      |   -x         3*x | |    3*x         2  3*x     -x|
  e            3*x         3  3*x    3*\- e   + 48*x*e    /    3*\- e   + 48*x*e    /*\48*e     + 288*x *e     + e  /
- --- + 432*x*e     + 864*x *e     + ----------------------- - ------------------------------------------------------
   2                                                     2                         /      2      \                   
                                          /      2      \                          |   3*x     -x|                   
                                          |   3*x     -x|                        4*\8*e     + e  /                   
                                        8*\8*e     + e  /                                                            
---------------------------------------------------------------------------------------------------------------------
                                                     _______________                                                 
                                                    /       2                                                        
                                                   /     3*x     -x                                                  
                                                 \/   8*e     + e                                                    
$$\frac{864 x^{3} e^{3 x^{2}} + 432 x e^{3 x^{2}} + \frac{3 \left(48 x e^{3 x^{2}} - e^{- x}\right)^{3}}{8 \left(8 e^{3 x^{2}} + e^{- x}\right)^{2}} - \frac{3 \left(48 x e^{3 x^{2}} - e^{- x}\right) \left(288 x^{2} e^{3 x^{2}} + 48 e^{3 x^{2}} + e^{- x}\right)}{4 \left(8 e^{3 x^{2}} + e^{- x}\right)} - \frac{e^{- x}}{2}}{\sqrt{8 e^{3 x^{2}} + e^{- x}}}$$