Mister Exam

Derivative of sqrt(cos^3x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   _________
  /    3    
\/  cos (x) 
$$\sqrt{\cos^{3}{\left(x \right)}}$$
sqrt(cos(x)^3)
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of cosine is negative sine:

      The result of the chain rule is:

    The result of the chain rule is:


The answer is:

The graph
The first derivative [src]
      _________       
     /    3           
-3*\/  cos (x) *sin(x)
----------------------
       2*cos(x)       
$$- \frac{3 \sqrt{\cos^{3}{\left(x \right)}} \sin{\left(x \right)}}{2 \cos{\left(x \right)}}$$
The second derivative [src]
     _________ /        2   \
    /    3     |     sin (x)|
3*\/  cos (x) *|-2 + -------|
               |        2   |
               \     cos (x)/
-----------------------------
              4              
$$\frac{3 \left(\frac{\sin^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}} - 2\right) \sqrt{\cos^{3}{\left(x \right)}}}{4}$$
The third derivative [src]
     _________ /        2   \       
    /    3     |     sin (x)|       
3*\/  cos (x) *|10 + -------|*sin(x)
               |        2   |       
               \     cos (x)/       
------------------------------------
              8*cos(x)              
$$\frac{3 \left(\frac{\sin^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}} + 10\right) \sqrt{\cos^{3}{\left(x \right)}} \sin{\left(x \right)}}{8 \cos{\left(x \right)}}$$