______________ \/ cos(7*x - 1)
d / ______________\ --\\/ cos(7*x - 1) / dx
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Let .
The derivative of cosine is negative sine:
Then, apply the chain rule. Multiply by :
Differentiate term by term:
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The derivative of the constant is zero.
The result is:
The result of the chain rule is:
The result of the chain rule is:
Now simplify:
The answer is:
-7*sin(7*x - 1)
------------------
______________
2*\/ cos(7*x - 1)
/ 2 \
| _______________ sin (-1 + 7*x) |
-49*|2*\/ cos(-1 + 7*x) + ----------------|
| 3/2 |
\ cos (-1 + 7*x)/
--------------------------------------------
4
/ 2 \
| 3*sin (-1 + 7*x)|
-343*|2 + ----------------|*sin(-1 + 7*x)
| 2 |
\ cos (-1 + 7*x) /
-----------------------------------------
_______________
8*\/ cos(-1 + 7*x)