Mister Exam

Other calculators

Derivative of sqrt(arctg(ln(x)+1))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  __________________
\/ atan(log(x) + 1) 
$$\sqrt{\operatorname{atan}{\left(\log{\left(x \right)} + 1 \right)}}$$
sqrt(atan(log(x) + 1))
The graph
The first derivative [src]
                     1                      
--------------------------------------------
    /                2\   __________________
2*x*\1 + (log(x) + 1) /*\/ atan(log(x) + 1) 
$$\frac{1}{2 x \left(\left(\log{\left(x \right)} + 1\right)^{2} + 1\right) \sqrt{\operatorname{atan}{\left(\log{\left(x \right)} + 1 \right)}}}$$
The second derivative [src]
 /1       1 + log(x)                        1                   \ 
-|- + ----------------- + --------------------------------------| 
 |2                   2     /                2\                 | 
 \    1 + (1 + log(x))    4*\1 + (1 + log(x)) /*atan(1 + log(x))/ 
------------------------------------------------------------------
            2 /                2\   __________________            
           x *\1 + (1 + log(x)) /*\/ atan(1 + log(x))             
$$- \frac{\frac{1}{2} + \frac{\log{\left(x \right)} + 1}{\left(\log{\left(x \right)} + 1\right)^{2} + 1} + \frac{1}{4 \left(\left(\log{\left(x \right)} + 1\right)^{2} + 1\right) \operatorname{atan}{\left(\log{\left(x \right)} + 1 \right)}}}{x^{2} \left(\left(\log{\left(x \right)} + 1\right)^{2} + 1\right) \sqrt{\operatorname{atan}{\left(\log{\left(x \right)} + 1 \right)}}}$$
The third derivative [src]
                                                            2                                                                                                                                 
            1             3*(1 + log(x))      4*(1 + log(x))                         3                                         3                                    3*(1 + log(x))            
1 - ----------------- + ----------------- + -------------------- + -------------------------------------- + ---------------------------------------- + ---------------------------------------
                    2                   2                      2     /                2\                                         2                                          2                 
    1 + (1 + log(x))    1 + (1 + log(x))    /                2\    4*\1 + (1 + log(x)) /*atan(1 + log(x))     /                2\      2                 /                2\                  
                                            \1 + (1 + log(x)) /                                             8*\1 + (1 + log(x)) / *atan (1 + log(x))   2*\1 + (1 + log(x)) / *atan(1 + log(x))
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                          3 /                2\   __________________                                                                          
                                                                         x *\1 + (1 + log(x)) /*\/ atan(1 + log(x))                                                                           
$$\frac{1 + \frac{3 \left(\log{\left(x \right)} + 1\right)}{\left(\log{\left(x \right)} + 1\right)^{2} + 1} - \frac{1}{\left(\log{\left(x \right)} + 1\right)^{2} + 1} + \frac{3}{4 \left(\left(\log{\left(x \right)} + 1\right)^{2} + 1\right) \operatorname{atan}{\left(\log{\left(x \right)} + 1 \right)}} + \frac{4 \left(\log{\left(x \right)} + 1\right)^{2}}{\left(\left(\log{\left(x \right)} + 1\right)^{2} + 1\right)^{2}} + \frac{3 \left(\log{\left(x \right)} + 1\right)}{2 \left(\left(\log{\left(x \right)} + 1\right)^{2} + 1\right)^{2} \operatorname{atan}{\left(\log{\left(x \right)} + 1 \right)}} + \frac{3}{8 \left(\left(\log{\left(x \right)} + 1\right)^{2} + 1\right)^{2} \operatorname{atan}^{2}{\left(\log{\left(x \right)} + 1 \right)}}}{x^{3} \left(\left(\log{\left(x \right)} + 1\right)^{2} + 1\right) \sqrt{\operatorname{atan}{\left(\log{\left(x \right)} + 1 \right)}}}$$