Mister Exam

Other calculators

Derivative of (sqrt4x+1)/(sqrt2x+3)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  _____    
\/ 4*x  + 1
-----------
  _____    
\/ 2*x  + 3
4x+12x+3\frac{\sqrt{4 x} + 1}{\sqrt{2 x} + 3}
(sqrt(4*x) + 1)/(sqrt(2*x) + 3)
Detail solution
  1. Apply the quotient rule, which is:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

    f(x)=2x+1f{\left(x \right)} = 2 \sqrt{x} + 1 and g(x)=2x+3g{\left(x \right)} = \sqrt{2} \sqrt{x} + 3.

    To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Differentiate 2x+12 \sqrt{x} + 1 term by term:

      1. The derivative of the constant 11 is zero.

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: x\sqrt{x} goes to 12x\frac{1}{2 \sqrt{x}}

        So, the result is: 1x\frac{1}{\sqrt{x}}

      The result is: 1x\frac{1}{\sqrt{x}}

    To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Differentiate 2x+3\sqrt{2} \sqrt{x} + 3 term by term:

      1. The derivative of the constant 33 is zero.

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: x\sqrt{x} goes to 12x\frac{1}{2 \sqrt{x}}

        So, the result is: 22x\frac{\sqrt{2}}{2 \sqrt{x}}

      The result is: 22x\frac{\sqrt{2}}{2 \sqrt{x}}

    Now plug in to the quotient rule:

    2(2x+1)2x+2x+3x(2x+3)2\frac{- \frac{\sqrt{2} \left(2 \sqrt{x} + 1\right)}{2 \sqrt{x}} + \frac{\sqrt{2} \sqrt{x} + 3}{\sqrt{x}}}{\left(\sqrt{2} \sqrt{x} + 3\right)^{2}}

  2. Now simplify:

    624x32+18x+122x\frac{6 - \sqrt{2}}{4 x^{\frac{3}{2}} + 18 \sqrt{x} + 12 \sqrt{2} x}


The answer is:

624x32+18x+122x\frac{6 - \sqrt{2}}{4 x^{\frac{3}{2}} + 18 \sqrt{x} + 12 \sqrt{2} x}

The graph
02468-8-6-4-2-101001
The first derivative [src]
                         ___ /  _____    \  
         1             \/ 2 *\\/ 4*x  + 1/  
------------------- - ----------------------
  ___ /  _____    \                        2
\/ x *\\/ 2*x  + 3/       ___ /  _____    \ 
                      2*\/ x *\\/ 2*x  + 3/ 
1x(2x+3)2(4x+1)2x(2x+3)2\frac{1}{\sqrt{x} \left(\sqrt{2 x} + 3\right)} - \frac{\sqrt{2} \left(\sqrt{4 x} + 1\right)}{2 \sqrt{x} \left(\sqrt{2 x} + 3\right)^{2}}
The second derivative [src]
                                               /  ___                      \
                                 /        ___\ |\/ 2             4         |
                                 \1 + 2*\/ x /*|----- + -------------------|
                    ___                        |  3/2     /      ___   ___\|
    1             \/ 2                         \ x      x*\3 + \/ 2 *\/ x //
- ------ - ------------------- + -------------------------------------------
     3/2     /      ___   ___\                 /      ___   ___\            
  2*x      x*\3 + \/ 2 *\/ x /               4*\3 + \/ 2 *\/ x /            
----------------------------------------------------------------------------
                                    ___   ___                               
                              3 + \/ 2 *\/ x                                
(2x+1)(4x(2x+3)+2x32)4(2x+3)2x(2x+3)12x322x+3\frac{\frac{\left(2 \sqrt{x} + 1\right) \left(\frac{4}{x \left(\sqrt{2} \sqrt{x} + 3\right)} + \frac{\sqrt{2}}{x^{\frac{3}{2}}}\right)}{4 \left(\sqrt{2} \sqrt{x} + 3\right)} - \frac{\sqrt{2}}{x \left(\sqrt{2} \sqrt{x} + 3\right)} - \frac{1}{2 x^{\frac{3}{2}}}}{\sqrt{2} \sqrt{x} + 3}
The third derivative [src]
  /                     /  ___                                      ___        \                                                         \
  |       /        ___\ |\/ 2             4                     4*\/ 2         |                            /  ___                      \|
  |       \1 + 2*\/ x /*|----- + -------------------- + -----------------------|                            |\/ 2             4         ||
  |                     |  5/2    2 /      ___   ___\                         2|                          2*|----- + -------------------||
  |                     | x      x *\3 + \/ 2 *\/ x /    3/2 /      ___   ___\ |             ___            |  3/2     /      ___   ___\||
  | 2                   \                               x   *\3 + \/ 2 *\/ x / /         2*\/ 2             \ x      x*\3 + \/ 2 *\/ x //|
3*|---- - ---------------------------------------------------------------------- + -------------------- + -------------------------------|
  | 5/2                                    ___   ___                                2 /      ___   ___\         ___ /      ___   ___\    |
  \x                                 3 + \/ 2 *\/ x                                x *\3 + \/ 2 *\/ x /       \/ x *\3 + \/ 2 *\/ x /    /
------------------------------------------------------------------------------------------------------------------------------------------
                                                             /      ___   ___\                                                            
                                                           8*\3 + \/ 2 *\/ x /                                                            
3((2x+1)(4x2(2x+3)+42x32(2x+3)2+2x52)2x+3+22x2(2x+3)+2(4x(2x+3)+2x32)x(2x+3)+2x52)8(2x+3)\frac{3 \left(- \frac{\left(2 \sqrt{x} + 1\right) \left(\frac{4}{x^{2} \left(\sqrt{2} \sqrt{x} + 3\right)} + \frac{4 \sqrt{2}}{x^{\frac{3}{2}} \left(\sqrt{2} \sqrt{x} + 3\right)^{2}} + \frac{\sqrt{2}}{x^{\frac{5}{2}}}\right)}{\sqrt{2} \sqrt{x} + 3} + \frac{2 \sqrt{2}}{x^{2} \left(\sqrt{2} \sqrt{x} + 3\right)} + \frac{2 \left(\frac{4}{x \left(\sqrt{2} \sqrt{x} + 3\right)} + \frac{\sqrt{2}}{x^{\frac{3}{2}}}\right)}{\sqrt{x} \left(\sqrt{2} \sqrt{x} + 3\right)} + \frac{2}{x^{\frac{5}{2}}}\right)}{8 \left(\sqrt{2} \sqrt{x} + 3\right)}