Mister Exam

Other calculators

Derivative of sqrt3((x-2)^5)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
          0.333333333333333
/       5\                 
\(x - 2) /                 
$$\left(\left(x - 2\right)^{5}\right)^{0.333333333333333}$$
((x - 2)^5)^0.333333333333333
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. Apply the power rule: goes to

        2. The derivative of the constant is zero.

        The result is:

      The result of the chain rule is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
                           0.333333333333333
                 /       5\                 
1.66666666666667*\(x - 2) /                 
--------------------------------------------
                   x - 2                    
$$\frac{1.66666666666667 \left(\left(x - 2\right)^{5}\right)^{0.333333333333333}}{x - 2}$$
The second derivative [src]
                            0.333333333333333
                 /        5\                 
1.11111111111111*\(-2 + x) /                 
---------------------------------------------
                          2                  
                  (-2 + x)                   
$$\frac{1.11111111111111 \left(\left(x - 2\right)^{5}\right)^{0.333333333333333}}{\left(x - 2\right)^{2}}$$
The third derivative [src]
                             0.333333333333333
                  /        5\                 
-0.37037037037037*\(-2 + x) /                 
----------------------------------------------
                          3                   
                  (-2 + x)                    
$$- \frac{0.37037037037037 \left(\left(x - 2\right)^{5}\right)^{0.333333333333333}}{\left(x - 2\right)^{3}}$$