Mister Exam

Other calculators

Derivative of (sqrt(2x))(x+1)^3

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  _____        3
\/ 2*x *(x + 1) 
$$\sqrt{2 x} \left(x + 1\right)^{3}$$
sqrt(2*x)*(x + 1)^3
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result of the chain rule is:

    ; to find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. Apply the power rule: goes to

        2. The derivative of the constant is zero.

        The result is:

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
                           ___        3
         2   ___   ___   \/ 2 *(x + 1) 
3*(x + 1) *\/ 2 *\/ x  + --------------
                                ___    
                            2*\/ x     
$$3 \sqrt{2} \sqrt{x} \left(x + 1\right)^{2} + \frac{\sqrt{2} \left(x + 1\right)^{3}}{2 \sqrt{x}}$$
The second derivative [src]
              /                             2\
  ___         |    ___   3*(1 + x)   (1 + x) |
\/ 2 *(1 + x)*|6*\/ x  + --------- - --------|
              |              ___         3/2 |
              \            \/ x       4*x    /
$$\sqrt{2} \left(x + 1\right) \left(6 \sqrt{x} + \frac{3 \left(x + 1\right)}{\sqrt{x}} - \frac{\left(x + 1\right)^{2}}{4 x^{\frac{3}{2}}}\right)$$
The third derivative [src]
        /                               2          3\
    ___ |    ___   3*(1 + x)   3*(1 + x)    (1 + x) |
3*\/ 2 *|2*\/ x  + --------- - ---------- + --------|
        |              ___          3/2         5/2 |
        \            \/ x        4*x         8*x    /
$$3 \sqrt{2} \left(2 \sqrt{x} + \frac{3 \left(x + 1\right)}{\sqrt{x}} - \frac{3 \left(x + 1\right)^{2}}{4 x^{\frac{3}{2}}} + \frac{\left(x + 1\right)^{3}}{8 x^{\frac{5}{2}}}\right)$$