_________ / 2*x + 3 / ------- \/ 2*x - 3
sqrt((2*x + 3)/(2*x - 3))
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Apply the quotient rule, which is:
and .
To find :
Differentiate term by term:
The derivative of the constant is zero.
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result is:
To find :
Differentiate term by term:
The derivative of the constant is zero.
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result is:
Now plug in to the quotient rule:
The result of the chain rule is:
Now simplify:
The answer is:
_________
/ 2*x + 3 / 1 2*x + 3 \
/ ------- *|------- - ----------|*(2*x - 3)
\/ 2*x - 3 |2*x - 3 2|
\ (2*x - 3) /
----------------------------------------------
2*x + 3
/ 3 + 2*x \
__________ | 1 - --------|
/ 3 + 2*x / 3 + 2*x \ | 2 2 -3 + 2*x|
/ -------- *|1 - --------|*|- -------- - ------- + ------------|
\/ -3 + 2*x \ -3 + 2*x/ \ -3 + 2*x 3 + 2*x 3 + 2*x /
-------------------------------------------------------------------
3 + 2*x
/ 2 \
| / 3 + 2*x \ / 3 + 2*x \ / 3 + 2*x \ |
__________ | |1 - --------| 6*|1 - --------| 6*|1 - --------| |
/ 3 + 2*x / 3 + 2*x \ | 8 8 \ -3 + 2*x/ \ -3 + 2*x/ 8 \ -3 + 2*x/ |
/ -------- *|1 - --------|*|----------- + ---------- + --------------- - ---------------- + -------------------- - --------------------|
\/ -3 + 2*x \ -3 + 2*x/ | 2 2 2 2 (-3 + 2*x)*(3 + 2*x) (-3 + 2*x)*(3 + 2*x)|
\(-3 + 2*x) (3 + 2*x) (3 + 2*x) (3 + 2*x) /
-------------------------------------------------------------------------------------------------------------------------------------------
3 + 2*x