Mister Exam

Other calculators

Derivative of sqrt(2x-5)(x+4)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  _________        
\/ 2*x - 5 *(x + 4)
(x+4)2x5\left(x + 4\right) \sqrt{2 x - 5}
sqrt(2*x - 5)*(x + 4)
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=2x5f{\left(x \right)} = \sqrt{2 x - 5}; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Let u=2x5u = 2 x - 5.

    2. Apply the power rule: u\sqrt{u} goes to 12u\frac{1}{2 \sqrt{u}}

    3. Then, apply the chain rule. Multiply by ddx(2x5)\frac{d}{d x} \left(2 x - 5\right):

      1. Differentiate 2x52 x - 5 term by term:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: xx goes to 11

          So, the result is: 22

        2. The derivative of the constant 5-5 is zero.

        The result is: 22

      The result of the chain rule is:

      12x5\frac{1}{\sqrt{2 x - 5}}

    g(x)=x+4g{\left(x \right)} = x + 4; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Differentiate x+4x + 4 term by term:

      1. Apply the power rule: xx goes to 11

      2. The derivative of the constant 44 is zero.

      The result is: 11

    The result is: x+42x5+2x5\frac{x + 4}{\sqrt{2 x - 5}} + \sqrt{2 x - 5}

  2. Now simplify:

    3x12x5\frac{3 x - 1}{\sqrt{2 x - 5}}


The answer is:

3x12x5\frac{3 x - 1}{\sqrt{2 x - 5}}

The graph
02468-8-6-4-2-10100100
The first derivative [src]
  _________      x + 4   
\/ 2*x - 5  + -----------
                _________
              \/ 2*x - 5 
x+42x5+2x5\frac{x + 4}{\sqrt{2 x - 5}} + \sqrt{2 x - 5}
The second derivative [src]
     4 + x  
2 - --------
    -5 + 2*x
------------
  __________
\/ -5 + 2*x 
x+42x5+22x5\frac{- \frac{x + 4}{2 x - 5} + 2}{\sqrt{2 x - 5}}
The third derivative [src]
  /      4 + x  \
3*|-1 + --------|
  \     -5 + 2*x/
-----------------
            3/2  
  (-5 + 2*x)     
3(x+42x51)(2x5)32\frac{3 \left(\frac{x + 4}{2 x - 5} - 1\right)}{\left(2 x - 5\right)^{\frac{3}{2}}}