Mister Exam

导数 sqrt(2cos3x)

函数 f() - 导数 -阶 在点
v

图像:

分段定义:

解答

You have entered [src]
  ____________
\/ 2*cos(3*x) 
$$\sqrt{2 \cos{\left(3 x \right)}}$$
sqrt(2*cos(3*x))
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Let .

      2. The derivative of cosine is negative sine:

      3. Then, apply the chain rule. Multiply by :

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result of the chain rule is:

      So, the result is:

    The result of the chain rule is:


The answer is:

The graph
The first derivative [src]
     ___   __________         
-3*\/ 2 *\/ cos(3*x) *sin(3*x)
------------------------------
          2*cos(3*x)          
$$- \frac{3 \sqrt{2} \sqrt{\cos{\left(3 x \right)}} \sin{\left(3 x \right)}}{2 \cos{\left(3 x \right)}}$$
The second derivative [src]
         /                     2      \
     ___ |    __________    sin (3*x) |
-9*\/ 2 *|2*\/ cos(3*x)  + -----------|
         |                    3/2     |
         \                 cos   (3*x)/
---------------------------------------
                   4                   
$$- \frac{9 \sqrt{2} \left(\frac{\sin^{2}{\left(3 x \right)}}{\cos^{\frac{3}{2}}{\left(3 x \right)}} + 2 \sqrt{\cos{\left(3 x \right)}}\right)}{4}$$
The third derivative [src]
          /         2     \         
      ___ |    3*sin (3*x)|         
-27*\/ 2 *|2 + -----------|*sin(3*x)
          |        2      |         
          \     cos (3*x) /         
------------------------------------
               __________           
           8*\/ cos(3*x)            
$$- \frac{27 \sqrt{2} \left(\frac{3 \sin^{2}{\left(3 x \right)}}{\cos^{2}{\left(3 x \right)}} + 2\right) \sin{\left(3 x \right)}}{8 \sqrt{\cos{\left(3 x \right)}}}$$