____________ \/ 2*cos(3*x)
sqrt(2*cos(3*x))
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Let .
The derivative of cosine is negative sine:
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result of the chain rule is:
So, the result is:
The result of the chain rule is:
The answer is:
___ __________
-3*\/ 2 *\/ cos(3*x) *sin(3*x)
------------------------------
2*cos(3*x)
/ 2 \
___ | __________ sin (3*x) |
-9*\/ 2 *|2*\/ cos(3*x) + -----------|
| 3/2 |
\ cos (3*x)/
---------------------------------------
4
/ 2 \
___ | 3*sin (3*x)|
-27*\/ 2 *|2 + -----------|*sin(3*x)
| 2 |
\ cos (3*x) /
------------------------------------
__________
8*\/ cos(3*x)