Mister Exam

Other calculators


sqrt(14x^2+16x+23)

Derivative of sqrt(14x^2+16x+23)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   ___________________
  /     2             
\/  14*x  + 16*x + 23 
14x2+16x+23\sqrt{14 x^{2} + 16 x + 23}
  /   ___________________\
d |  /     2             |
--\\/  14*x  + 16*x + 23 /
dx                        
ddx14x2+16x+23\frac{d}{d x} \sqrt{14 x^{2} + 16 x + 23}
Detail solution
  1. Let u=14x2+16x+23u = 14 x^{2} + 16 x + 23.

  2. Apply the power rule: u\sqrt{u} goes to 12u\frac{1}{2 \sqrt{u}}

  3. Then, apply the chain rule. Multiply by ddx(14x2+16x+23)\frac{d}{d x} \left(14 x^{2} + 16 x + 23\right):

    1. Differentiate 14x2+16x+2314 x^{2} + 16 x + 23 term by term:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: x2x^{2} goes to 2x2 x

        So, the result is: 28x28 x

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 1616

      3. The derivative of the constant 2323 is zero.

      The result is: 28x+1628 x + 16

    The result of the chain rule is:

    28x+16214x2+16x+23\frac{28 x + 16}{2 \sqrt{14 x^{2} + 16 x + 23}}

  4. Now simplify:

    2(7x+4)14x2+16x+23\frac{2 \cdot \left(7 x + 4\right)}{\sqrt{14 x^{2} + 16 x + 23}}


The answer is:

2(7x+4)14x2+16x+23\frac{2 \cdot \left(7 x + 4\right)}{\sqrt{14 x^{2} + 16 x + 23}}

The graph
02468-8-6-4-2-1010-5050
The first derivative [src]
       8 + 14*x       
----------------------
   ___________________
  /     2             
\/  14*x  + 16*x + 23 
14x+814x2+16x+23\frac{14 x + 8}{\sqrt{14 x^{2} + 16 x + 23}}
The second derivative [src]
  /                  2  \
  |       2*(4 + 7*x)   |
2*|7 - -----------------|
  |             2       |
  \    23 + 14*x  + 16*x/
-------------------------
     ___________________ 
    /          2         
  \/  23 + 14*x  + 16*x  
2(2(7x+4)214x2+16x+23+7)14x2+16x+23\frac{2 \left(- \frac{2 \left(7 x + 4\right)^{2}}{14 x^{2} + 16 x + 23} + 7\right)}{\sqrt{14 x^{2} + 16 x + 23}}
The third derivative [src]
   /                   2  \          
   |        2*(4 + 7*x)   |          
12*|-7 + -----------------|*(4 + 7*x)
   |              2       |          
   \     23 + 14*x  + 16*x/          
-------------------------------------
                           3/2       
        /         2       \          
        \23 + 14*x  + 16*x/          
12(7x+4)(2(7x+4)214x2+16x+237)(14x2+16x+23)32\frac{12 \cdot \left(7 x + 4\right) \left(\frac{2 \left(7 x + 4\right)^{2}}{14 x^{2} + 16 x + 23} - 7\right)}{\left(14 x^{2} + 16 x + 23\right)^{\frac{3}{2}}}
The graph
Derivative of sqrt(14x^2+16x+23)