Mister Exam

Other calculators

Derivative of sqrt(10x)+3sqrt(200-20x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  ______       ____________
\/ 10*x  + 3*\/ 200 - 20*x 
$$\sqrt{10 x} + 3 \sqrt{200 - 20 x}$$
sqrt(10*x) + 3*sqrt(200 - 20*x)
Detail solution
  1. Differentiate term by term:

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result of the chain rule is:

    4. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Let .

      2. Apply the power rule: goes to

      3. Then, apply the chain rule. Multiply by :

        1. Differentiate term by term:

          1. The derivative of the constant is zero.

          2. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          The result is:

        The result of the chain rule is:

      So, the result is:

    The result is:

  2. Now simplify:


The answer is:

The first derivative [src]
                     ____   ___
        30         \/ 10 *\/ x 
- -------------- + ------------
    ____________       2*x     
  \/ 200 - 20*x                
$$- \frac{30}{\sqrt{200 - 20 x}} + \frac{\sqrt{10} \sqrt{x}}{2 x}$$
The second derivative [src]
 /  ____         ___  \ 
 |\/ 10      6*\/ 5   | 
-|------ + -----------| 
 |  3/2            3/2| 
 \ x       (10 - x)   / 
------------------------
           4            
$$- \frac{\frac{6 \sqrt{5}}{\left(10 - x\right)^{\frac{3}{2}}} + \frac{\sqrt{10}}{x^{\frac{3}{2}}}}{4}$$
The third derivative [src]
  /  ____         ___  \
  |\/ 10      6*\/ 5   |
3*|------ - -----------|
  |  5/2            5/2|
  \ x       (10 - x)   /
------------------------
           8            
$$\frac{3 \left(- \frac{6 \sqrt{5}}{\left(10 - x\right)^{\frac{5}{2}}} + \frac{\sqrt{10}}{x^{\frac{5}{2}}}\right)}{8}$$