0.1 / x \ |-----| \x + 5/
(x/(x + 5))^0.1
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Apply the quotient rule, which is:
and .
To find :
Apply the power rule: goes to
To find :
Differentiate term by term:
The derivative of the constant is zero.
Apply the power rule: goes to
The result is:
Now plug in to the quotient rule:
The result of the chain rule is:
Now simplify:
The answer is:
0.1
/ x \ / 0.1 0.1*x \
|-----| *(x + 5)*|----- - --------|
\x + 5/ |x + 5 2|
\ (x + 5) /
-------------------------------------
x
/ 0.01*x\
0.1 | -0.01 + ------|
/ x \ / x \ |0.1 0.1 5 + x |
|-----| *|-1 + -----|*|--- + ----- + --------------|
\5 + x/ \ 5 + x/ \ x 5 + x x /
------------------------------------------------------
x
/ 2 \
| 0.03*x / x \ 0.03*x 0.02*x 0.04*x|
0.1 | -0.03 + ------ 0.001*|-1 + -----| -0.03 + ------ -0.02 + ------ -0.04 + ------|
/ x \ / x \ | 0.2 0.2 5 + x 0.2 \ 5 + x/ 5 + x 5 + x 5 + x |
|-----| *|-1 + -----|*|- -------- - --- - -------------- - --------- - ------------------- + -------------- - -------------- - --------------|
\5 + x/ \ 5 + x/ | 2 2 2 x*(5 + x) 2 x*(5 + x) x*(5 + x) x*(5 + x) |
\ (5 + x) x x x /
------------------------------------------------------------------------------------------------------------------------------------------------
x