Mister Exam

Other calculators


6x-ln(x+5)^6+3

Derivative of 6x-ln(x+5)^6+3

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
         6           
6*x - log (x + 5) + 3
(6xlog(x+5)6)+3\left(6 x - \log{\left(x + 5 \right)}^{6}\right) + 3
Detail solution
  1. Differentiate (6xlog(x+5)6)+3\left(6 x - \log{\left(x + 5 \right)}^{6}\right) + 3 term by term:

    1. Differentiate 6xlog(x+5)66 x - \log{\left(x + 5 \right)}^{6} term by term:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 66

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Let u=log(x+5)u = \log{\left(x + 5 \right)}.

        2. Apply the power rule: u6u^{6} goes to 6u56 u^{5}

        3. Then, apply the chain rule. Multiply by ddxlog(x+5)\frac{d}{d x} \log{\left(x + 5 \right)}:

          1. Let u=x+5u = x + 5.

          2. The derivative of log(u)\log{\left(u \right)} is 1u\frac{1}{u}.

          3. Then, apply the chain rule. Multiply by ddx(x+5)\frac{d}{d x} \left(x + 5\right):

            1. Differentiate x+5x + 5 term by term:

              1. Apply the power rule: xx goes to 11

              2. The derivative of the constant 55 is zero.

              The result is: 11

            The result of the chain rule is:

            1x+5\frac{1}{x + 5}

          The result of the chain rule is:

          6log(x+5)5x+5\frac{6 \log{\left(x + 5 \right)}^{5}}{x + 5}

        So, the result is: 6log(x+5)5x+5- \frac{6 \log{\left(x + 5 \right)}^{5}}{x + 5}

      The result is: 66log(x+5)5x+56 - \frac{6 \log{\left(x + 5 \right)}^{5}}{x + 5}

    2. The derivative of the constant 33 is zero.

    The result is: 66log(x+5)5x+56 - \frac{6 \log{\left(x + 5 \right)}^{5}}{x + 5}

  2. Now simplify:

    6(xlog(x+5)5+5)x+5\frac{6 \left(x - \log{\left(x + 5 \right)}^{5} + 5\right)}{x + 5}


The answer is:

6(xlog(x+5)5+5)x+5\frac{6 \left(x - \log{\left(x + 5 \right)}^{5} + 5\right)}{x + 5}

The graph
02468-8-6-4-2-1010-5000050000
The first derivative [src]
         5       
    6*log (x + 5)
6 - -------------
        x + 5    
66log(x+5)5x+56 - \frac{6 \log{\left(x + 5 \right)}^{5}}{x + 5}
The second derivative [src]
     4                         
6*log (5 + x)*(-5 + log(5 + x))
-------------------------------
                   2           
            (5 + x)            
6(log(x+5)5)log(x+5)4(x+5)2\frac{6 \left(\log{\left(x + 5 \right)} - 5\right) \log{\left(x + 5 \right)}^{4}}{\left(x + 5\right)^{2}}
The third derivative [src]
     3        /           2                       \
6*log (5 + x)*\-20 - 2*log (5 + x) + 15*log(5 + x)/
---------------------------------------------------
                             3                     
                      (5 + x)                      
6(2log(x+5)2+15log(x+5)20)log(x+5)3(x+5)3\frac{6 \left(- 2 \log{\left(x + 5 \right)}^{2} + 15 \log{\left(x + 5 \right)} - 20\right) \log{\left(x + 5 \right)}^{3}}{\left(x + 5\right)^{3}}
The graph
Derivative of 6x-ln(x+5)^6+3