cos(x) (6*x - 8)
(6*x - 8)^cos(x)
Don't know the steps in finding this derivative.
But the derivative is
The answer is:
cos(x) / 6*cos(x)\
(6*x - 8) *|-log(6*x - 8)*sin(x) + --------|
\ 6*x - 8 /
/ 2 \
cos(x) |/ 3*cos(x)\ 9*cos(x) 6*sin(x)|
(2*(-4 + 3*x)) *||log(2*(-4 + 3*x))*sin(x) - --------| - cos(x)*log(2*(-4 + 3*x)) - ----------- - --------|
|\ -4 + 3*x/ 2 -4 + 3*x|
\ (-4 + 3*x) /
/ 3 \
cos(x) | / 3*cos(x)\ 9*cos(x) / 3*cos(x)\ / 6*sin(x) 9*cos(x) \ 27*sin(x) 54*cos(x) |
(2*(-4 + 3*x)) *|- |log(2*(-4 + 3*x))*sin(x) - --------| + log(2*(-4 + 3*x))*sin(x) - -------- + 3*|log(2*(-4 + 3*x))*sin(x) - --------|*|cos(x)*log(2*(-4 + 3*x)) + -------- + -----------| + ----------- + -----------|
| \ -4 + 3*x/ -4 + 3*x \ -4 + 3*x/ | -4 + 3*x 2| 2 3|
\ \ (-4 + 3*x) / (-4 + 3*x) (-4 + 3*x) /