Mister Exam

Derivative of sin(0.5*x2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /x2\
sin|--|
   \2 /
sin(x22)\sin{\left(\frac{x_{2}}{2} \right)}
sin(x2/2)
Detail solution
  1. Let u=x22u = \frac{x_{2}}{2}.

  2. The derivative of sine is cosine:

    ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

  3. Then, apply the chain rule. Multiply by ddx2x22\frac{d}{d x_{2}} \frac{x_{2}}{2}:

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Apply the power rule: x2x_{2} goes to 11

      So, the result is: 12\frac{1}{2}

    The result of the chain rule is:

    cos(x22)2\frac{\cos{\left(\frac{x_{2}}{2} \right)}}{2}


The answer is:

cos(x22)2\frac{\cos{\left(\frac{x_{2}}{2} \right)}}{2}

The graph
02468-8-6-4-2-10102-2
The first derivative [src]
   /x2\
cos|--|
   \2 /
-------
   2   
cos(x22)2\frac{\cos{\left(\frac{x_{2}}{2} \right)}}{2}
The second derivative [src]
    /x2\ 
-sin|--| 
    \2 / 
---------
    4    
sin(x22)4- \frac{\sin{\left(\frac{x_{2}}{2} \right)}}{4}
The third derivative [src]
    /x2\ 
-cos|--| 
    \2 / 
---------
    8    
cos(x22)8- \frac{\cos{\left(\frac{x_{2}}{2} \right)}}{8}