Mister Exam

Other calculators


sin(z^6)+sin^6(z)

Derivative of sin(z^6)+sin^6(z)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   / 6\      6   
sin\z / + sin (z)
$$\sin^{6}{\left(z \right)} + \sin{\left(z^{6} \right)}$$
d /   / 6\      6   \
--\sin\z / + sin (z)/
dz                   
$$\frac{d}{d z} \left(\sin^{6}{\left(z \right)} + \sin{\left(z^{6} \right)}\right)$$
Detail solution
  1. Differentiate term by term:

    1. Let .

    2. The derivative of sine is cosine:

    3. Then, apply the chain rule. Multiply by :

      1. Apply the power rule: goes to

      The result of the chain rule is:

    4. Let .

    5. Apply the power rule: goes to

    6. Then, apply the chain rule. Multiply by :

      1. The derivative of sine is cosine:

      The result of the chain rule is:

    The result is:


The answer is:

The graph
The first derivative [src]
   5    / 6\        5          
6*z *cos\z / + 6*sin (z)*cos(z)
$$6 z^{5} \cos{\left(z^{6} \right)} + 6 \sin^{5}{\left(z \right)} \cos{\left(z \right)}$$
The second derivative [src]
  /     6         10    / 6\      4    / 6\        2       4   \
6*\- sin (z) - 6*z  *sin\z / + 5*z *cos\z / + 5*cos (z)*sin (z)/
$$6 \left(- 6 z^{10} \sin{\left(z^{6} \right)} - \sin^{6}{\left(z \right)} + 5 \sin^{4}{\left(z \right)} \cos^{2}{\left(z \right)} + 5 z^{4} \cos{\left(z^{6} \right)}\right)$$
The third derivative [src]
   /      9    / 6\       15    / 6\        5                 3    / 6\         3       3   \
12*\- 45*z *sin\z / - 18*z  *cos\z / - 8*sin (z)*cos(z) + 10*z *cos\z / + 10*cos (z)*sin (z)/
$$12 \left(- 18 z^{15} \cos{\left(z^{6} \right)} - 45 z^{9} \sin{\left(z^{6} \right)} - 8 \sin^{5}{\left(z \right)} \cos{\left(z \right)} + 10 \sin^{3}{\left(z \right)} \cos^{3}{\left(z \right)} + 10 z^{3} \cos{\left(z^{6} \right)}\right)$$
The graph
Derivative of sin(z^6)+sin^6(z)