/ 6\ 6 sin\z / + sin (z)
d / / 6\ 6 \ --\sin\z / + sin (z)/ dz
Differentiate term by term:
Let .
The derivative of sine is cosine:
Then, apply the chain rule. Multiply by :
Apply the power rule: goes to
The result of the chain rule is:
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
The derivative of sine is cosine:
The result of the chain rule is:
The result is:
The answer is:
5 / 6\ 5 6*z *cos\z / + 6*sin (z)*cos(z)
/ 6 10 / 6\ 4 / 6\ 2 4 \ 6*\- sin (z) - 6*z *sin\z / + 5*z *cos\z / + 5*cos (z)*sin (z)/
/ 9 / 6\ 15 / 6\ 5 3 / 6\ 3 3 \ 12*\- 45*z *sin\z / - 18*z *cos\z / - 8*sin (z)*cos(z) + 10*z *cos\z / + 10*cos (z)*sin (z)/