Mister Exam

Other calculators


sin(x^2+5)

Derivative of sin(x^2+5)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   / 2    \
sin\x  + 5/
sin(x2+5)\sin{\left(x^{2} + 5 \right)}
sin(x^2 + 5)
Detail solution
  1. Let u=x2+5u = x^{2} + 5.

  2. The derivative of sine is cosine:

    ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

  3. Then, apply the chain rule. Multiply by ddx(x2+5)\frac{d}{d x} \left(x^{2} + 5\right):

    1. Differentiate x2+5x^{2} + 5 term by term:

      1. Apply the power rule: x2x^{2} goes to 2x2 x

      2. The derivative of the constant 55 is zero.

      The result is: 2x2 x

    The result of the chain rule is:

    2xcos(x2+5)2 x \cos{\left(x^{2} + 5 \right)}

  4. Now simplify:

    2xcos(x2+5)2 x \cos{\left(x^{2} + 5 \right)}


The answer is:

2xcos(x2+5)2 x \cos{\left(x^{2} + 5 \right)}

The graph
02468-8-6-4-2-1010-5050
The first derivative [src]
       / 2    \
2*x*cos\x  + 5/
2xcos(x2+5)2 x \cos{\left(x^{2} + 5 \right)}
The second derivative [src]
  /     2    /     2\      /     2\\
2*\- 2*x *sin\5 + x / + cos\5 + x //
2(2x2sin(x2+5)+cos(x2+5))2 \left(- 2 x^{2} \sin{\left(x^{2} + 5 \right)} + \cos{\left(x^{2} + 5 \right)}\right)
The third derivative [src]
     /     /     2\      2    /     2\\
-4*x*\3*sin\5 + x / + 2*x *cos\5 + x //
4x(2x2cos(x2+5)+3sin(x2+5))- 4 x \left(2 x^{2} \cos{\left(x^{2} + 5 \right)} + 3 \sin{\left(x^{2} + 5 \right)}\right)
The graph
Derivative of sin(x^2+5)