Mister Exam

Other calculators


sin(x)^2*(cos(x)+1)

Derivative of sin(x)^2*(cos(x)+1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   2                
sin (x)*(cos(x) + 1)
$$\left(\cos{\left(x \right)} + 1\right) \sin^{2}{\left(x \right)}$$
d /   2                \
--\sin (x)*(cos(x) + 1)/
dx                      
$$\frac{d}{d x} \left(\cos{\left(x \right)} + 1\right) \sin^{2}{\left(x \right)}$$
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of sine is cosine:

      The result of the chain rule is:

    ; to find :

    1. Differentiate term by term:

      1. The derivative of cosine is negative sine:

      2. The derivative of the constant is zero.

      The result is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
     3                                  
- sin (x) + 2*(cos(x) + 1)*cos(x)*sin(x)
$$2 \left(\cos{\left(x \right)} + 1\right) \sin{\left(x \right)} \cos{\left(x \right)} - \sin^{3}{\left(x \right)}$$
The second derivative [src]
 /               /   2         2   \        2          \
-\2*(1 + cos(x))*\sin (x) - cos (x)/ + 5*sin (x)*cos(x)/
$$- (5 \sin^{2}{\left(x \right)} \cos{\left(x \right)} + 2 \left(\sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}\right) \left(\cos{\left(x \right)} + 1\right))$$
The third derivative [src]
/        2           2                           \       
\- 12*cos (x) + 7*sin (x) - 8*(1 + cos(x))*cos(x)/*sin(x)
$$\left(- 8 \left(\cos{\left(x \right)} + 1\right) \cos{\left(x \right)} + 7 \sin^{2}{\left(x \right)} - 12 \cos^{2}{\left(x \right)}\right) \sin{\left(x \right)}$$
The graph
Derivative of sin(x)^2*(cos(x)+1)