Mister Exam

Other calculators

Derivative of sin(x^2-1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   / 2    \
sin\x  - 1/
sin(x21)\sin{\left(x^{2} - 1 \right)}
sin(x^2 - 1)
Detail solution
  1. Let u=x21u = x^{2} - 1.

  2. The derivative of sine is cosine:

    ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

  3. Then, apply the chain rule. Multiply by ddx(x21)\frac{d}{d x} \left(x^{2} - 1\right):

    1. Differentiate x21x^{2} - 1 term by term:

      1. Apply the power rule: x2x^{2} goes to 2x2 x

      2. The derivative of the constant 1-1 is zero.

      The result is: 2x2 x

    The result of the chain rule is:

    2xcos(x21)2 x \cos{\left(x^{2} - 1 \right)}

  4. Now simplify:

    2xcos(x21)2 x \cos{\left(x^{2} - 1 \right)}


The answer is:

2xcos(x21)2 x \cos{\left(x^{2} - 1 \right)}

The graph
02468-8-6-4-2-1010-5050
The first derivative [src]
       / 2    \
2*x*cos\x  - 1/
2xcos(x21)2 x \cos{\left(x^{2} - 1 \right)}
The second derivative [src]
  /     2    /      2\      /      2\\
2*\- 2*x *sin\-1 + x / + cos\-1 + x //
2(2x2sin(x21)+cos(x21))2 \left(- 2 x^{2} \sin{\left(x^{2} - 1 \right)} + \cos{\left(x^{2} - 1 \right)}\right)
4-я производная [src]
  /       /      2\       2    /      2\      4    /      2\\
4*\- 3*sin\-1 + x / - 12*x *cos\-1 + x / + 4*x *sin\-1 + x //
4(4x4sin(x21)12x2cos(x21)3sin(x21))4 \left(4 x^{4} \sin{\left(x^{2} - 1 \right)} - 12 x^{2} \cos{\left(x^{2} - 1 \right)} - 3 \sin{\left(x^{2} - 1 \right)}\right)
The third derivative [src]
     /     /      2\      2    /      2\\
-4*x*\3*sin\-1 + x / + 2*x *cos\-1 + x //
4x(2x2cos(x21)+3sin(x21))- 4 x \left(2 x^{2} \cos{\left(x^{2} - 1 \right)} + 3 \sin{\left(x^{2} - 1 \right)}\right)