2 sin (x) ------- 2 x
sin(x)^2/x^2
Apply the quotient rule, which is:
and .
To find :
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
The derivative of sine is cosine:
The result of the chain rule is:
To find :
Apply the power rule: goes to
Now plug in to the quotient rule:
Now simplify:
The answer is:
2 2*sin (x) 2*cos(x)*sin(x) - --------- + --------------- 3 2 x x
/ 2 \ | 2 2 3*sin (x) 4*cos(x)*sin(x)| 2*|cos (x) - sin (x) + --------- - ---------------| | 2 x | \ x / --------------------------------------------------- 2 x
/ 2 / 2 2 \ \ | 6*sin (x) 3*\sin (x) - cos (x)/ 9*cos(x)*sin(x)| 4*|- --------- - 2*cos(x)*sin(x) + --------------------- + ---------------| | 3 x 2 | \ x x / --------------------------------------------------------------------------- 2 x