2
sin (x)
-------
2
x
sin(x)^2/x^2
Apply the quotient rule, which is:
and .
To find :
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
The derivative of sine is cosine:
The result of the chain rule is:
To find :
Apply the power rule: goes to
Now plug in to the quotient rule:
Now simplify:
The answer is:
2
2*sin (x) 2*cos(x)*sin(x)
- --------- + ---------------
3 2
x x
/ 2 \
| 2 2 3*sin (x) 4*cos(x)*sin(x)|
2*|cos (x) - sin (x) + --------- - ---------------|
| 2 x |
\ x /
---------------------------------------------------
2
x
/ 2 / 2 2 \ \
| 6*sin (x) 3*\sin (x) - cos (x)/ 9*cos(x)*sin(x)|
4*|- --------- - 2*cos(x)*sin(x) + --------------------- + ---------------|
| 3 x 2 |
\ x x /
---------------------------------------------------------------------------
2
x