Mister Exam

Other calculators

Derivative of sinx^2/sin^2x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   2   
sin (x)
-------
   2   
sin (x)
$$\frac{\sin^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}$$
sin(x)^2/sin(x)^2
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of sine is cosine:

      The result of the chain rule is:

    To find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of sine is cosine:

      The result of the chain rule is:

    Now plug in to the quotient rule:


The answer is:

The graph
The first derivative [src]
  2*cos(x)   2*cos(x)*sin(x)
- -------- + ---------------
   sin(x)           2       
                 sin (x)    
$$\frac{2 \sin{\left(x \right)} \cos{\left(x \right)}}{\sin^{2}{\left(x \right)}} - \frac{2 \cos{\left(x \right)}}{\sin{\left(x \right)}}$$
The second derivative [src]
  /       2         2         2   \
  |    cos (x)   sin (x) - cos (x)|
2*|1 - ------- - -----------------|
  |       2              2        |
  \    sin (x)        sin (x)     /
$$2 \left(- \frac{\sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}} + 1 - \frac{\cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}\right)$$
The third derivative [src]
  /          2        /   2         2   \\       
  |     3*cos (x)   3*\sin (x) - cos (x)/|       
4*|-3 + --------- + ---------------------|*cos(x)
  |         2                 2          |       
  \      sin (x)           sin (x)       /       
-------------------------------------------------
                      sin(x)                     
$$\frac{4 \left(\frac{3 \left(\sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}\right)}{\sin^{2}{\left(x \right)}} - 3 + \frac{3 \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}\right) \cos{\left(x \right)}}{\sin{\left(x \right)}}$$