2 sin (x) ------- 2 sin (x)
sin(x)^2/sin(x)^2
Apply the quotient rule, which is:
and .
To find :
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
The derivative of sine is cosine:
The result of the chain rule is:
To find :
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
The derivative of sine is cosine:
The result of the chain rule is:
Now plug in to the quotient rule:
The answer is:
2*cos(x) 2*cos(x)*sin(x)
- -------- + ---------------
sin(x) 2
sin (x)
/ 2 2 2 \ | cos (x) sin (x) - cos (x)| 2*|1 - ------- - -----------------| | 2 2 | \ sin (x) sin (x) /
/ 2 / 2 2 \\
| 3*cos (x) 3*\sin (x) - cos (x)/|
4*|-3 + --------- + ---------------------|*cos(x)
| 2 2 |
\ sin (x) sin (x) /
-------------------------------------------------
sin(x)