Mister Exam

Other calculators

Derivative of (sinx)^(ln(sinx)/5)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
        log(sin(x))
        -----------
             5     
(sin(x))           
$$\sin^{\frac{\log{\left(\sin{\left(x \right)} \right)}}{5}}{\left(x \right)}$$
sin(x)^(log(sin(x))/5)
Detail solution
  1. Don't know the steps in finding this derivative.

    But the derivative is

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
          log(sin(x))                   
          -----------                   
               5                        
2*(sin(x))           *cos(x)*log(sin(x))
----------------------------------------
                5*sin(x)                
$$\frac{2 \log{\left(\sin{\left(x \right)} \right)} \sin^{\frac{\log{\left(\sin{\left(x \right)} \right)}}{5}}{\left(x \right)} \cos{\left(x \right)}}{5 \sin{\left(x \right)}}$$
The second derivative [src]
          log(sin(x))                                                                              
          ----------- /                      2           2                       2       2        \
               5      |                 5*cos (x)   5*cos (x)*log(sin(x))   2*cos (x)*log (sin(x))|
2*(sin(x))           *|-5*log(sin(x)) + --------- - --------------------- + ----------------------|
                      |                     2                 2                       2           |
                      \                  sin (x)           sin (x)                 sin (x)        /
---------------------------------------------------------------------------------------------------
                                                 25                                                
$$\frac{2 \left(\frac{2 \log{\left(\sin{\left(x \right)} \right)}^{2} \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}} - 5 \log{\left(\sin{\left(x \right)} \right)} - \frac{5 \log{\left(\sin{\left(x \right)} \right)} \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}} + \frac{5 \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}\right) \sin^{\frac{\log{\left(\sin{\left(x \right)} \right)}}{5}}{\left(x \right)}}{25}$$
The third derivative [src]
          log(sin(x))                                                                                                                                         
          ----------- /                                               2            2       2                2       3                 2               \       
               5      |            2                            75*cos (x)   30*cos (x)*log (sin(x))   4*cos (x)*log (sin(x))   80*cos (x)*log(sin(x))|       
2*(sin(x))           *|-75 - 30*log (sin(x)) + 50*log(sin(x)) - ---------- - ----------------------- + ---------------------- + ----------------------|*cos(x)
                      |                                             2                   2                        2                        2           |       
                      \                                          sin (x)             sin (x)                  sin (x)                  sin (x)        /       
--------------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                          125*sin(x)                                                                          
$$\frac{2 \left(\frac{4 \log{\left(\sin{\left(x \right)} \right)}^{3} \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}} - 30 \log{\left(\sin{\left(x \right)} \right)}^{2} - \frac{30 \log{\left(\sin{\left(x \right)} \right)}^{2} \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}} + 50 \log{\left(\sin{\left(x \right)} \right)} + \frac{80 \log{\left(\sin{\left(x \right)} \right)} \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}} - 75 - \frac{75 \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}\right) \sin^{\frac{\log{\left(\sin{\left(x \right)} \right)}}{5}}{\left(x \right)} \cos{\left(x \right)}}{125 \sin{\left(x \right)}}$$