log(sin(x))
-----------
5
(sin(x))
sin(x)^(log(sin(x))/5)
Don't know the steps in finding this derivative.
But the derivative is
Now simplify:
The answer is:
log(sin(x))
-----------
5
2*(sin(x)) *cos(x)*log(sin(x))
----------------------------------------
5*sin(x)
log(sin(x))
----------- / 2 2 2 2 \
5 | 5*cos (x) 5*cos (x)*log(sin(x)) 2*cos (x)*log (sin(x))|
2*(sin(x)) *|-5*log(sin(x)) + --------- - --------------------- + ----------------------|
| 2 2 2 |
\ sin (x) sin (x) sin (x) /
---------------------------------------------------------------------------------------------------
25
log(sin(x))
----------- / 2 2 2 2 3 2 \
5 | 2 75*cos (x) 30*cos (x)*log (sin(x)) 4*cos (x)*log (sin(x)) 80*cos (x)*log(sin(x))|
2*(sin(x)) *|-75 - 30*log (sin(x)) + 50*log(sin(x)) - ---------- - ----------------------- + ---------------------- + ----------------------|*cos(x)
| 2 2 2 2 |
\ sin (x) sin (x) sin (x) sin (x) /
--------------------------------------------------------------------------------------------------------------------------------------------------------------
125*sin(x)