Mister Exam

Other calculators


sin(x)^5^(1/2)

Derivative of sin(x)^5^(1/2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
          ___
        \/ 5 
(sin(x))     
$$\sin^{\sqrt{5}}{\left(x \right)}$$
  /          ___\
d |        \/ 5 |
--\(sin(x))     /
dx               
$$\frac{d}{d x} \sin^{\sqrt{5}}{\left(x \right)}$$
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. The derivative of sine is cosine:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
                ___       
  ___         \/ 5        
\/ 5 *(sin(x))     *cos(x)
--------------------------
          sin(x)          
$$\frac{\sqrt{5} \sin^{\sqrt{5}}{\left(x \right)} \cos{\left(x \right)}}{\sin{\left(x \right)}}$$
The second derivative [src]
          ___ /               2        ___    2   \
        \/ 5  |    ___   5*cos (x)   \/ 5 *cos (x)|
(sin(x))     *|- \/ 5  + --------- - -------------|
              |              2             2      |
              \           sin (x)       sin (x)   /
$$\left(- \sqrt{5} - \frac{\sqrt{5} \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}} + \frac{5 \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}\right) \sin^{\sqrt{5}}{\left(x \right)}$$
The third derivative [src]
          ___ /                      2          ___    2   \       
        \/ 5  |          ___   15*cos (x)   7*\/ 5 *cos (x)|       
(sin(x))     *|-15 + 2*\/ 5  - ---------- + ---------------|*cos(x)
              |                    2               2       |       
              \                 sin (x)         sin (x)    /       
-------------------------------------------------------------------
                               sin(x)                              
$$\frac{\left(-15 + 2 \sqrt{5} - \frac{15 \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}} + \frac{7 \sqrt{5} \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}\right) \sin^{\sqrt{5}}{\left(x \right)} \cos{\left(x \right)}}{\sin{\left(x \right)}}$$
The graph
Derivative of sin(x)^5^(1/2)