___
\/ 5
(sin(x))
/ ___\ d | \/ 5 | --\(sin(x)) / dx
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
The derivative of sine is cosine:
The result of the chain rule is:
Now simplify:
The answer is:
___
___ \/ 5
\/ 5 *(sin(x)) *cos(x)
--------------------------
sin(x)
___ / 2 ___ 2 \
\/ 5 | ___ 5*cos (x) \/ 5 *cos (x)|
(sin(x)) *|- \/ 5 + --------- - -------------|
| 2 2 |
\ sin (x) sin (x) /
___ / 2 ___ 2 \
\/ 5 | ___ 15*cos (x) 7*\/ 5 *cos (x)|
(sin(x)) *|-15 + 2*\/ 5 - ---------- + ---------------|*cos(x)
| 2 2 |
\ sin (x) sin (x) /
-------------------------------------------------------------------
sin(x)