Mister Exam

Other calculators


sinx^5*(e^x)

Derivative of sinx^5*(e^x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   5     x
sin (x)*e 
$$e^{x} \sin^{5}{\left(x \right)}$$
d /   5     x\
--\sin (x)*e /
dx            
$$\frac{d}{d x} e^{x} \sin^{5}{\left(x \right)}$$
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of sine is cosine:

      The result of the chain rule is:

    ; to find :

    1. The derivative of is itself.

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
   5     x        4            x
sin (x)*e  + 5*sin (x)*cos(x)*e 
$$e^{x} \sin^{5}{\left(x \right)} + 5 e^{x} \sin^{4}{\left(x \right)} \cos{\left(x \right)}$$
The second derivative [src]
   3    /       2            2                      \  x
sin (x)*\- 4*sin (x) + 20*cos (x) + 10*cos(x)*sin(x)/*e 
$$\left(- 4 \sin^{2}{\left(x \right)} + 10 \sin{\left(x \right)} \cos{\left(x \right)} + 20 \cos^{2}{\left(x \right)}\right) e^{x} \sin^{3}{\left(x \right)}$$
The third derivative [src]
   2    /   3         /   2           2   \            /        2            2   \                2          \  x
sin (x)*\sin (x) - 15*\sin (x) - 4*cos (x)/*sin(x) - 5*\- 12*cos (x) + 13*sin (x)/*cos(x) + 15*sin (x)*cos(x)/*e 
$$\left(\sin^{3}{\left(x \right)} + 15 \sin^{2}{\left(x \right)} \cos{\left(x \right)} - 15 \left(\sin^{2}{\left(x \right)} - 4 \cos^{2}{\left(x \right)}\right) \sin{\left(x \right)} - 5 \cdot \left(13 \sin^{2}{\left(x \right)} - 12 \cos^{2}{\left(x \right)}\right) \cos{\left(x \right)}\right) e^{x} \sin^{2}{\left(x \right)}$$
The graph
Derivative of sinx^5*(e^x)