Detail solution
-
Apply the product rule:
; to find :
-
Let .
-
Apply the power rule: goes to
-
Then, apply the chain rule. Multiply by :
-
The derivative of sine is cosine:
The result of the chain rule is:
; to find :
-
The derivative of is itself.
The result is:
Now simplify:
The answer is:
The first derivative
[src]
5 x 4 x
sin (x)*e + 5*sin (x)*cos(x)*e
$$e^{x} \sin^{5}{\left(x \right)} + 5 e^{x} \sin^{4}{\left(x \right)} \cos{\left(x \right)}$$
The second derivative
[src]
3 / 2 2 \ x
sin (x)*\- 4*sin (x) + 20*cos (x) + 10*cos(x)*sin(x)/*e
$$\left(- 4 \sin^{2}{\left(x \right)} + 10 \sin{\left(x \right)} \cos{\left(x \right)} + 20 \cos^{2}{\left(x \right)}\right) e^{x} \sin^{3}{\left(x \right)}$$
The third derivative
[src]
2 / 3 / 2 2 \ / 2 2 \ 2 \ x
sin (x)*\sin (x) - 15*\sin (x) - 4*cos (x)/*sin(x) - 5*\- 12*cos (x) + 13*sin (x)/*cos(x) + 15*sin (x)*cos(x)/*e
$$\left(\sin^{3}{\left(x \right)} + 15 \sin^{2}{\left(x \right)} \cos{\left(x \right)} - 15 \left(\sin^{2}{\left(x \right)} - 4 \cos^{2}{\left(x \right)}\right) \sin{\left(x \right)} - 5 \cdot \left(13 \sin^{2}{\left(x \right)} - 12 \cos^{2}{\left(x \right)}\right) \cos{\left(x \right)}\right) e^{x} \sin^{2}{\left(x \right)}$$