Mister Exam

Derivative of sinx+4(√(1-sinx))-5

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
             ____________    
sin(x) + 4*\/ 1 - sin(x)  - 5
$$\left(4 \sqrt{1 - \sin{\left(x \right)}} + \sin{\left(x \right)}\right) - 5$$
sin(x) + 4*sqrt(1 - sin(x)) - 5
Detail solution
  1. Differentiate term by term:

    1. Differentiate term by term:

      1. The derivative of sine is cosine:

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Let .

        2. Apply the power rule: goes to

        3. Then, apply the chain rule. Multiply by :

          1. Differentiate term by term:

            1. The derivative of the constant is zero.

            2. The derivative of a constant times a function is the constant times the derivative of the function.

              1. The derivative of sine is cosine:

              So, the result is:

            The result is:

          The result of the chain rule is:

        So, the result is:

      The result is:

    2. The derivative of the constant is zero.

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
     2*cos(x)            
- -------------- + cos(x)
    ____________         
  \/ 1 - sin(x)          
$$\cos{\left(x \right)} - \frac{2 \cos{\left(x \right)}}{\sqrt{1 - \sin{\left(x \right)}}}$$
The second derivative [src]
                 2                        
              cos (x)          2*sin(x)   
-sin(x) - --------------- + --------------
                      3/2     ____________
          (1 - sin(x))      \/ 1 - sin(x) 
$$- \sin{\left(x \right)} + \frac{2 \sin{\left(x \right)}}{\sqrt{1 - \sin{\left(x \right)}}} - \frac{\cos^{2}{\left(x \right)}}{\left(1 - \sin{\left(x \right)}\right)^{\frac{3}{2}}}$$
The third derivative [src]
/                                                 2       \       
|           2              3*sin(x)          3*cos (x)    |       
|-1 + -------------- + --------------- - -----------------|*cos(x)
|       ____________               3/2                 5/2|       
\     \/ 1 - sin(x)    (1 - sin(x))      2*(1 - sin(x))   /       
$$\left(-1 + \frac{2}{\sqrt{1 - \sin{\left(x \right)}}} + \frac{3 \sin{\left(x \right)}}{\left(1 - \sin{\left(x \right)}\right)^{\frac{3}{2}}} - \frac{3 \cos^{2}{\left(x \right)}}{2 \left(1 - \sin{\left(x \right)}\right)^{\frac{5}{2}}}\right) \cos{\left(x \right)}$$