Mister Exam

Derivative of (sinx+cosx)(tanx+cotx)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
(sin(x) + cos(x))*(tan(x) + cot(x))
$$\left(\sin{\left(x \right)} + \cos{\left(x \right)}\right) \left(\tan{\left(x \right)} + \cot{\left(x \right)}\right)$$
d                                      
--((sin(x) + cos(x))*(tan(x) + cot(x)))
dx                                     
$$\frac{d}{d x} \left(\sin{\left(x \right)} + \cos{\left(x \right)}\right) \left(\tan{\left(x \right)} + \cot{\left(x \right)}\right)$$
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Differentiate term by term:

      1. The derivative of sine is cosine:

      2. The derivative of cosine is negative sine:

      The result is:

    ; to find :

    1. Differentiate term by term:

      1. Rewrite the function to be differentiated:

      2. Apply the quotient rule, which is:

        and .

        To find :

        1. The derivative of sine is cosine:

        To find :

        1. The derivative of cosine is negative sine:

        Now plug in to the quotient rule:

      3. There are multiple ways to do this derivative.

        Method #1

        1. Rewrite the function to be differentiated:

        2. Let .

        3. Apply the power rule: goes to

        4. Then, apply the chain rule. Multiply by :

          The result of the chain rule is:

        Method #2

        1. Rewrite the function to be differentiated:

        2. Apply the quotient rule, which is:

          and .

          To find :

          1. The derivative of cosine is negative sine:

          To find :

          1. The derivative of sine is cosine:

          Now plug in to the quotient rule:

      The result is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
/   2         2   \                                                         
\tan (x) - cot (x)/*(sin(x) + cos(x)) + (-sin(x) + cos(x))*(tan(x) + cot(x))
$$\left(- \sin{\left(x \right)} + \cos{\left(x \right)}\right) \left(\tan{\left(x \right)} + \cot{\left(x \right)}\right) + \left(\sin{\left(x \right)} + \cos{\left(x \right)}\right) \left(\tan^{2}{\left(x \right)} - \cot^{2}{\left(x \right)}\right)$$
The second derivative [src]
                                         /   2         2   \                        //       2   \          /       2   \       \                  
-(cos(x) + sin(x))*(cot(x) + tan(x)) - 2*\tan (x) - cot (x)/*(-cos(x) + sin(x)) + 2*\\1 + cot (x)/*cot(x) + \1 + tan (x)/*tan(x)/*(cos(x) + sin(x))
$$2 \left(\left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)} + \left(\cot^{2}{\left(x \right)} + 1\right) \cot{\left(x \right)}\right) \left(\sin{\left(x \right)} + \cos{\left(x \right)}\right) - 2 \left(\sin{\left(x \right)} - \cos{\left(x \right)}\right) \left(\tan^{2}{\left(x \right)} - \cot^{2}{\left(x \right)}\right) - \left(\sin{\left(x \right)} + \cos{\left(x \right)}\right) \left(\tan{\left(x \right)} + \cot{\left(x \right)}\right)$$
The third derivative [src]
                                                                                                                                                                          /             2                2                                                    \
                                                            //       2   \          /       2   \       \     /   2         2   \                                         |/       2   \    /       2   \         2    /       2   \        2    /       2   \|
(-cos(x) + sin(x))*(cot(x) + tan(x)) - 6*(-cos(x) + sin(x))*\\1 + cot (x)/*cot(x) + \1 + tan (x)/*tan(x)/ - 3*\tan (x) - cot (x)/*(cos(x) + sin(x)) + 2*(cos(x) + sin(x))*\\1 + tan (x)/  - \1 + cot (x)/  - 2*cot (x)*\1 + cot (x)/ + 2*tan (x)*\1 + tan (x)//
$$- 6 \left(\left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)} + \left(\cot^{2}{\left(x \right)} + 1\right) \cot{\left(x \right)}\right) \left(\sin{\left(x \right)} - \cos{\left(x \right)}\right) + \left(\sin{\left(x \right)} - \cos{\left(x \right)}\right) \left(\tan{\left(x \right)} + \cot{\left(x \right)}\right) - 3 \left(\sin{\left(x \right)} + \cos{\left(x \right)}\right) \left(\tan^{2}{\left(x \right)} - \cot^{2}{\left(x \right)}\right) + 2 \left(\sin{\left(x \right)} + \cos{\left(x \right)}\right) \left(\left(\tan^{2}{\left(x \right)} + 1\right)^{2} + 2 \left(\tan^{2}{\left(x \right)} + 1\right) \tan^{2}{\left(x \right)} - \left(\cot^{2}{\left(x \right)} + 1\right)^{2} - 2 \left(\cot^{2}{\left(x \right)} + 1\right) \cot^{2}{\left(x \right)}\right)$$
The graph
Derivative of (sinx+cosx)(tanx+cotx)