Mister Exam

Derivative of sin(x)*loga(x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
       log(x)
sin(x)*------
       log(a)
$$\frac{\log{\left(x \right)}}{\log{\left(a \right)}} \sin{\left(x \right)}$$
sin(x)*(log(x)/log(a))
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Apply the product rule:

      ; to find :

      1. The derivative of is .

      ; to find :

      1. The derivative of sine is cosine:

      The result is:

    To find :

    1. The derivative of the constant is zero.

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The first derivative [src]
 sin(x)    cos(x)*log(x)
-------- + -------------
x*log(a)       log(a)   
$$\frac{\log{\left(x \right)} \cos{\left(x \right)}}{\log{\left(a \right)}} + \frac{\sin{\left(x \right)}}{x \log{\left(a \right)}}$$
The second derivative [src]
  sin(x)                   2*cos(x)
- ------ - log(x)*sin(x) + --------
     2                        x    
    x                              
-----------------------------------
               log(a)              
$$\frac{- \log{\left(x \right)} \sin{\left(x \right)} + \frac{2 \cos{\left(x \right)}}{x} - \frac{\sin{\left(x \right)}}{x^{2}}}{\log{\left(a \right)}}$$
The third derivative [src]
                 3*sin(x)   3*cos(x)   2*sin(x)
-cos(x)*log(x) - -------- - -------- + --------
                    x           2          3   
                               x          x    
-----------------------------------------------
                     log(a)                    
$$\frac{- \log{\left(x \right)} \cos{\left(x \right)} - \frac{3 \sin{\left(x \right)}}{x} - \frac{3 \cos{\left(x \right)}}{x^{2}} + \frac{2 \sin{\left(x \right)}}{x^{3}}}{\log{\left(a \right)}}$$