Mister Exam

Other calculators


sin(x)/(x)^(1/2)

Derivative of sin(x)/(x)^(1/2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
sin(x)
------
  ___ 
\/ x  
$$\frac{\sin{\left(x \right)}}{\sqrt{x}}$$
sin(x)/sqrt(x)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. The derivative of sine is cosine:

    To find :

    1. Apply the power rule: goes to

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
cos(x)   sin(x)
------ - ------
  ___       3/2
\/ x     2*x   
$$\frac{\cos{\left(x \right)}}{\sqrt{x}} - \frac{\sin{\left(x \right)}}{2 x^{\frac{3}{2}}}$$
The second derivative [src]
          cos(x)   3*sin(x)
-sin(x) - ------ + --------
            x           2  
                     4*x   
---------------------------
             ___           
           \/ x            
$$\frac{- \sin{\left(x \right)} - \frac{\cos{\left(x \right)}}{x} + \frac{3 \sin{\left(x \right)}}{4 x^{2}}}{\sqrt{x}}$$
The third derivative [src]
          15*sin(x)   3*sin(x)   9*cos(x)
-cos(x) - --------- + -------- + --------
                3       2*x           2  
             8*x                   4*x   
-----------------------------------------
                    ___                  
                  \/ x                   
$$\frac{- \cos{\left(x \right)} + \frac{3 \sin{\left(x \right)}}{2 x} + \frac{9 \cos{\left(x \right)}}{4 x^{2}} - \frac{15 \sin{\left(x \right)}}{8 x^{3}}}{\sqrt{x}}$$
The graph
Derivative of sin(x)/(x)^(1/2)