Mister Exam

Other calculators


sin(x)/(1+log(sin(x)))

Derivative of sin(x)/(1+log(sin(x)))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
     sin(x)    
---------------
1 + log(sin(x))
$$\frac{\sin{\left(x \right)}}{\log{\left(\sin{\left(x \right)} \right)} + 1}$$
sin(x)/(1 + log(sin(x)))
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. The derivative of sine is cosine:

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. Let .

      3. The derivative of is .

      4. Then, apply the chain rule. Multiply by :

        1. The derivative of sine is cosine:

        The result of the chain rule is:

      The result is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
     cos(x)             cos(x)      
--------------- - ------------------
1 + log(sin(x))                    2
                  (1 + log(sin(x))) 
$$\frac{\cos{\left(x \right)}}{\log{\left(\sin{\left(x \right)} \right)} + 1} - \frac{\cos{\left(x \right)}}{\left(\log{\left(\sin{\left(x \right)} \right)} + 1\right)^{2}}$$
The second derivative [src]
          /       2                   2           \                                  
          |    cos (x)           2*cos (x)        |                                  
          |1 + ------- + -------------------------|*sin(x)                           
          |       2                           2   |                      2           
          \    sin (x)   (1 + log(sin(x)))*sin (x)/                 2*cos (x)        
-sin(x) + ------------------------------------------------ - ------------------------
                          1 + log(sin(x))                    (1 + log(sin(x)))*sin(x)
-------------------------------------------------------------------------------------
                                   1 + log(sin(x))                                   
$$\frac{- \sin{\left(x \right)} + \frac{\left(1 + \frac{\cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}} + \frac{2 \cos^{2}{\left(x \right)}}{\left(\log{\left(\sin{\left(x \right)} \right)} + 1\right) \sin^{2}{\left(x \right)}}\right) \sin{\left(x \right)}}{\log{\left(\sin{\left(x \right)} \right)} + 1} - \frac{2 \cos^{2}{\left(x \right)}}{\left(\log{\left(\sin{\left(x \right)} \right)} + 1\right) \sin{\left(x \right)}}}{\log{\left(\sin{\left(x \right)} \right)} + 1}$$
The third derivative [src]
/                         /                         2                   2                           2            \     /       2                   2           \\       
|                         |           3          cos (x)           3*cos (x)                   3*cos (x)         |     |    cos (x)           2*cos (x)        ||       
|                       2*|1 + --------------- + ------- + ------------------------- + --------------------------|   3*|1 + ------- + -------------------------||       
|                         |    1 + log(sin(x))      2                           2                       2    2   |     |       2                           2   ||       
|            3            \                      sin (x)   (1 + log(sin(x)))*sin (x)   (1 + log(sin(x))) *sin (x)/     \    sin (x)   (1 + log(sin(x)))*sin (x)/|       
|-1 + --------------- - ------------------------------------------------------------------------------------------ + -------------------------------------------|*cos(x)
\     1 + log(sin(x))                                        1 + log(sin(x))                                                       1 + log(sin(x))              /       
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                            1 + log(sin(x))                                                                             
$$\frac{\left(-1 + \frac{3 \left(1 + \frac{\cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}} + \frac{2 \cos^{2}{\left(x \right)}}{\left(\log{\left(\sin{\left(x \right)} \right)} + 1\right) \sin^{2}{\left(x \right)}}\right)}{\log{\left(\sin{\left(x \right)} \right)} + 1} - \frac{2 \left(1 + \frac{\cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}} + \frac{3}{\log{\left(\sin{\left(x \right)} \right)} + 1} + \frac{3 \cos^{2}{\left(x \right)}}{\left(\log{\left(\sin{\left(x \right)} \right)} + 1\right) \sin^{2}{\left(x \right)}} + \frac{3 \cos^{2}{\left(x \right)}}{\left(\log{\left(\sin{\left(x \right)} \right)} + 1\right)^{2} \sin^{2}{\left(x \right)}}\right)}{\log{\left(\sin{\left(x \right)} \right)} + 1} + \frac{3}{\log{\left(\sin{\left(x \right)} \right)} + 1}\right) \cos{\left(x \right)}}{\log{\left(\sin{\left(x \right)} \right)} + 1}$$
The graph
Derivative of sin(x)/(1+log(sin(x)))