sin(x) --------------- 1 + log(sin(x))
sin(x)/(1 + log(sin(x)))
Apply the quotient rule, which is:
and .
To find :
The derivative of sine is cosine:
To find :
Differentiate term by term:
The derivative of the constant is zero.
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
The derivative of sine is cosine:
The result of the chain rule is:
The result is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
cos(x) cos(x)
--------------- - ------------------
1 + log(sin(x)) 2
(1 + log(sin(x)))
/ 2 2 \
| cos (x) 2*cos (x) |
|1 + ------- + -------------------------|*sin(x)
| 2 2 | 2
\ sin (x) (1 + log(sin(x)))*sin (x)/ 2*cos (x)
-sin(x) + ------------------------------------------------ - ------------------------
1 + log(sin(x)) (1 + log(sin(x)))*sin(x)
-------------------------------------------------------------------------------------
1 + log(sin(x))
/ / 2 2 2 \ / 2 2 \\
| | 3 cos (x) 3*cos (x) 3*cos (x) | | cos (x) 2*cos (x) ||
| 2*|1 + --------------- + ------- + ------------------------- + --------------------------| 3*|1 + ------- + -------------------------||
| | 1 + log(sin(x)) 2 2 2 2 | | 2 2 ||
| 3 \ sin (x) (1 + log(sin(x)))*sin (x) (1 + log(sin(x))) *sin (x)/ \ sin (x) (1 + log(sin(x)))*sin (x)/|
|-1 + --------------- - ------------------------------------------------------------------------------------------ + -------------------------------------------|*cos(x)
\ 1 + log(sin(x)) 1 + log(sin(x)) 1 + log(sin(x)) /
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
1 + log(sin(x))