sin(x) --------------- 8*cos(x)*sin(x)
sin(x)/(((8*cos(x))*sin(x)))
Apply the quotient rule, which is:
and .
To find :
The derivative of sine is cosine:
To find :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the product rule:
; to find :
The derivative of cosine is negative sine:
; to find :
The derivative of sine is cosine:
The result is:
So, the result is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
2 2
1 - 8*cos (x) + 8*sin (x)
---------------*cos(x) + -----------------------
8*cos(x)*sin(x) 2
64*cos (x)*sin(x)
2 2 2 2
sin (x) - cos (x) sin (x) - cos (x) / 1 1 \ / 2 2 \
3 + ----------------- + ----------------- + |------- - -------|*\sin (x) - cos (x)/
2 2 | 2 2 |
cos (x) sin (x) \cos (x) sin (x)/
-----------------------------------------------------------------------------------
8*cos(x)
/ 2 2 2 2 \
/ / 1 1 \ / 2 2 \ / 1 1 \ / 2 2 \ / 2 2 \ / sin(x) cos(x)\\ | sin (x) - cos (x) / 1 1 \ / 2 2 \ sin (x) - cos (x)|
| |------- - -------|*\sin (x) - cos (x)/ |------- - -------|*\sin (x) - cos (x)/ 2*\sin (x) - cos (x)/*|------- + -------|| 3*|4 + ----------------- + |------- - -------|*\sin (x) - cos (x)/ - -----------------|
| / 2 2 \ / 2 2 \ | 2 2 | | 2 2 | / 2 2 \ | 3 3 || | 2 | 2 2 | 2 | / 2 2 \
1 | 12 12 3*\sin (x) - cos (x)/ 3*\sin (x) - cos (x)/ \cos (x) sin (x)/ \cos (x) sin (x)/ 2*\sin (x) - cos (x)/ \cos (x) sin (x)/| \ cos (x) \cos (x) sin (x)/ sin (x) / 3*\sin (x) - cos (x)/
- ------ + |- ------- + ------- + --------------------- + --------------------- + --------------------------------------- - --------------------------------------- - --------------------- + -----------------------------------------|*sin(x) + --------------------------------------------------------------------------------------- - ---------------------
sin(x) | 2 2 4 4 2 2 2 2 cos(x)*sin(x) | sin(x) 2
\ sin (x) cos (x) cos (x) sin (x) cos (x) sin (x) cos (x)*sin (x) / cos (x)*sin(x)
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
8