sin(x) ------- 4 cos (x)
Apply the quotient rule, which is:
and .
To find :
The derivative of sine is cosine:
To find :
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
The derivative of cosine is negative sine:
The result of the chain rule is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
2 cos(x) 4*sin (x) ------- + --------- 4 5 cos (x) cos (x)
/ 2 \
| 20*sin (x)|
|11 + ----------|*sin(x)
| 2 |
\ cos (x) /
------------------------
4
cos (x)
/ 2 \
2 | 15*sin (x)|
8*sin (x)*|7 + ----------|
2 | 2 |
48*sin (x) \ cos (x) /
11 + ---------- + --------------------------
2 2
cos (x) cos (x)
--------------------------------------------
3
cos (x)