Mister Exam

Other calculators

Derivative of (sinx)/(cos^3x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 sin(x)
-------
   3   
cos (x)
$$\frac{\sin{\left(x \right)}}{\cos^{3}{\left(x \right)}}$$
sin(x)/cos(x)^3
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. The derivative of sine is cosine:

    To find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of cosine is negative sine:

      The result of the chain rule is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
               2   
 cos(x)   3*sin (x)
------- + ---------
   3          4    
cos (x)    cos (x) 
$$\frac{3 \sin^{2}{\left(x \right)}}{\cos^{4}{\left(x \right)}} + \frac{\cos{\left(x \right)}}{\cos^{3}{\left(x \right)}}$$
The second derivative [src]
/          2   \       
|    12*sin (x)|       
|8 + ----------|*sin(x)
|        2     |       
\     cos (x)  /       
-----------------------
           3           
        cos (x)        
$$\frac{\left(\frac{12 \sin^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}} + 8\right) \sin{\left(x \right)}}{\cos^{3}{\left(x \right)}}$$
The third derivative [src]
                           /           2   \
                      2    |     20*sin (x)|
                 3*sin (x)*|11 + ----------|
          2                |         2     |
    27*sin (x)             \      cos (x)  /
8 + ---------- + ---------------------------
        2                     2             
     cos (x)               cos (x)          
--------------------------------------------
                     2                      
                  cos (x)                   
$$\frac{\frac{3 \left(\frac{20 \sin^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}} + 11\right) \sin^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}} + \frac{27 \sin^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}} + 8}{\cos^{2}{\left(x \right)}}$$