sin(x) ------------ 5*cos(x) + 4
sin(x)/(5*cos(x) + 4)
Apply the quotient rule, which is:
and .
To find :
The derivative of sine is cosine:
To find :
Differentiate term by term:
The derivative of the constant is zero.
The derivative of a constant times a function is the constant times the derivative of the function.
The derivative of cosine is negative sine:
So, the result is:
The result is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
2
cos(x) 5*sin (x)
------------ + ---------------
5*cos(x) + 4 2
(5*cos(x) + 4)
/ / 2 \ \
| | 10*sin (x) | |
| 5*|------------ + cos(x)| |
| \4 + 5*cos(x) / 10*cos(x) |
|-1 + ------------------------- + ------------|*sin(x)
\ 4 + 5*cos(x) 4 + 5*cos(x)/
------------------------------------------------------
4 + 5*cos(x)
/ 2 \
2 | 30*cos(x) 150*sin (x) | / 2 \
5*sin (x)*|-1 + ------------ + ---------------| | 10*sin (x) |
2 | 4 + 5*cos(x) 2| 15*|------------ + cos(x)|*cos(x)
15*sin (x) \ (4 + 5*cos(x)) / \4 + 5*cos(x) /
-cos(x) - ------------ + ----------------------------------------------- + ---------------------------------
4 + 5*cos(x) 4 + 5*cos(x) 4 + 5*cos(x)
------------------------------------------------------------------------------------------------------------
4 + 5*cos(x)