Mister Exam

Other calculators

Derivative of sinx/(5cosx+4)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   sin(x)   
------------
5*cos(x) + 4
$$\frac{\sin{\left(x \right)}}{5 \cos{\left(x \right)} + 4}$$
sin(x)/(5*cos(x) + 4)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. The derivative of sine is cosine:

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. The derivative of cosine is negative sine:

        So, the result is:

      The result is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
                       2      
   cos(x)         5*sin (x)   
------------ + ---------------
5*cos(x) + 4                 2
               (5*cos(x) + 4) 
$$\frac{\cos{\left(x \right)}}{5 \cos{\left(x \right)} + 4} + \frac{5 \sin^{2}{\left(x \right)}}{\left(5 \cos{\left(x \right)} + 4\right)^{2}}$$
The second derivative [src]
/       /       2             \               \       
|       | 10*sin (x)          |               |       
|     5*|------------ + cos(x)|               |       
|       \4 + 5*cos(x)         /    10*cos(x)  |       
|-1 + ------------------------- + ------------|*sin(x)
\            4 + 5*cos(x)         4 + 5*cos(x)/       
------------------------------------------------------
                     4 + 5*cos(x)                     
$$\frac{\left(\frac{5 \left(\cos{\left(x \right)} + \frac{10 \sin^{2}{\left(x \right)}}{5 \cos{\left(x \right)} + 4}\right)}{5 \cos{\left(x \right)} + 4} - 1 + \frac{10 \cos{\left(x \right)}}{5 \cos{\left(x \right)} + 4}\right) \sin{\left(x \right)}}{5 \cos{\left(x \right)} + 4}$$
The third derivative [src]
                                   /                             2     \                                    
                              2    |      30*cos(x)       150*sin (x)  |      /       2             \       
                         5*sin (x)*|-1 + ------------ + ---------------|      | 10*sin (x)          |       
                 2                 |     4 + 5*cos(x)                 2|   15*|------------ + cos(x)|*cos(x)
           15*sin (x)              \                    (4 + 5*cos(x)) /      \4 + 5*cos(x)         /       
-cos(x) - ------------ + ----------------------------------------------- + ---------------------------------
          4 + 5*cos(x)                     4 + 5*cos(x)                               4 + 5*cos(x)          
------------------------------------------------------------------------------------------------------------
                                                4 + 5*cos(x)                                                
$$\frac{\frac{15 \left(\cos{\left(x \right)} + \frac{10 \sin^{2}{\left(x \right)}}{5 \cos{\left(x \right)} + 4}\right) \cos{\left(x \right)}}{5 \cos{\left(x \right)} + 4} - \cos{\left(x \right)} + \frac{5 \left(-1 + \frac{30 \cos{\left(x \right)}}{5 \cos{\left(x \right)} + 4} + \frac{150 \sin^{2}{\left(x \right)}}{\left(5 \cos{\left(x \right)} + 4\right)^{2}}\right) \sin^{2}{\left(x \right)}}{5 \cos{\left(x \right)} + 4} - \frac{15 \sin^{2}{\left(x \right)}}{5 \cos{\left(x \right)} + 4}}{5 \cos{\left(x \right)} + 4}$$