Mister Exam

Derivative of sin(x²+3)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   / 2    \
sin\x  + 3/
$$\sin{\left(x^{2} + 3 \right)}$$
sin(x^2 + 3)
Detail solution
  1. Let .

  2. The derivative of sine is cosine:

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. Apply the power rule: goes to

      2. The derivative of the constant is zero.

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
       / 2    \
2*x*cos\x  + 3/
$$2 x \cos{\left(x^{2} + 3 \right)}$$
The second derivative [src]
  /     2    /     2\      /     2\\
2*\- 2*x *sin\3 + x / + cos\3 + x //
$$2 \left(- 2 x^{2} \sin{\left(x^{2} + 3 \right)} + \cos{\left(x^{2} + 3 \right)}\right)$$
The third derivative [src]
     /     /     2\      2    /     2\\
-4*x*\3*sin\3 + x / + 2*x *cos\3 + x //
$$- 4 x \left(2 x^{2} \cos{\left(x^{2} + 3 \right)} + 3 \sin{\left(x^{2} + 3 \right)}\right)$$