Detail solution
-
Let .
-
The derivative of sine is cosine:
-
Then, apply the chain rule. Multiply by :
-
Differentiate term by term:
-
Apply the power rule: goes to
-
The derivative of the constant is zero.
The result is:
The result of the chain rule is:
-
Now simplify:
The answer is:
The first derivative
[src]
$$2 x \cos{\left(x^{2} + 3 \right)}$$
The second derivative
[src]
/ 2 / 2\ / 2\\
2*\- 2*x *sin\3 + x / + cos\3 + x //
$$2 \left(- 2 x^{2} \sin{\left(x^{2} + 3 \right)} + \cos{\left(x^{2} + 3 \right)}\right)$$
The third derivative
[src]
/ / 2\ 2 / 2\\
-4*x*\3*sin\3 + x / + 2*x *cos\3 + x //
$$- 4 x \left(2 x^{2} \cos{\left(x^{2} + 3 \right)} + 3 \sin{\left(x^{2} + 3 \right)}\right)$$